1
0
mirror of https://github.com/TREX-CoE/qmc-lttc.git synced 2024-12-21 11:53:58 +01:00

OK up to DMC

This commit is contained in:
Anthony Scemama 2021-01-26 13:11:57 +01:00
parent 94971bc5ea
commit dd40ff74d1
4 changed files with 225 additions and 129 deletions

190
QMC.org
View File

@ -1428,7 +1428,7 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_metropolis.f90 -o qmc_metropolis
: E = -0.49515370205041676 +/- 1.7660819245720729E-004
: A = 0.51713866666666664 +/- 3.7072551835783688E-004
** TODO Gaussian random number generator
** Gaussian random number generator
To obtain Gaussian-distributed random numbers, you can apply the
[[https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform][Box Muller transform]] to uniform random numbers:
@ -1473,15 +1473,16 @@ subroutine random_gauss(z,n)
end subroutine random_gauss
#+END_SRC
** TODO Generalized Metropolis algorithm
In Python, you can use the [[https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html][~random.normal~]] function of Numpy.
** Generalized Metropolis algorithm
:PROPERTIES:
:header-args:python: :tangle vmc_metropolis.py
:header-args:f90: :tangle vmc_metropolis.f90
:END:
One can use more efficient numerical schemes to move the electrons.
But in that case, the Metropolis accepation step has to be adapted
accordingly: the acceptance
One can use more efficient numerical schemes to move the electrons,
but the Metropolis accepation step has to be adapted accordingly:
the acceptance
probability $A$ is chosen so that it is consistent with the
probability of leaving $\mathbf{r}_n$ and the probability of
entering $\mathbf{r}_{n+1}$:
@ -1499,19 +1500,19 @@ end subroutine random_gauss
numbers. Hence, the transition probability was
\[
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) & = &
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) =
\text{constant}
\]
So the expression of $A$ was simplified to the ratios of the squared
so the expression of $A$ was simplified to the ratios of the squared
wave functions.
Now, if instead of drawing uniform random numbers
choose to draw Gaussian random numbers with mean 0 and variance
Now, if instead of drawing uniform random numbers we
choose to draw Gaussian random numbers with zero mean and variance
$\tau$, the transition probability becomes:
\[
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) & = &
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) =
\frac{1}{(2\pi\,\tau)^{3/2}} \exp \left[ - \frac{\left(
\mathbf{r}_{n+1} - \mathbf{r}_{n} \right)^2}{2\tau} \right]
\]
@ -1525,8 +1526,8 @@ end subroutine random_gauss
To do this, we can add the drift vector
\[
\frac{\nabla [ \Psi^2 ]}{\Psi^2} = 2 \frac{\nabla \Psi}{\Psi}
\].
\frac{\nabla [ \Psi^2 ]}{\Psi^2} = 2 \frac{\nabla \Psi}{\Psi}.
\]
The numerical scheme becomes a drifted diffusion:
@ -1540,7 +1541,7 @@ end subroutine random_gauss
The transition probability becomes:
\[
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) & = &
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) =
\frac{1}{(2\pi\,\tau)^{3/2}} \exp \left[ - \frac{\left(
\mathbf{r}_{n+1} - \mathbf{r}_{n} - \frac{\nabla
\Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{2\,\tau} \right]
@ -1553,14 +1554,30 @@ end subroutine random_gauss
Write a function to compute the drift vector $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$.
#+end_exercise
*Python*
**** Python
#+BEGIN_SRC python :tangle hydrogen.py :tangle none
def drift(a,r):
# TODO
#+END_SRC
**** Python :solution:
#+BEGIN_SRC python :tangle hydrogen.py
def drift(a,r):
ar_inv = -a/np.sqrt(np.dot(r,r))
return r * ar_inv
#+END_SRC
*Fortran*
**** Fortran
#+BEGIN_SRC f90 :tangle hydrogen.f90 :tangle none
subroutine drift(a,r,b)
implicit none
double precision, intent(in) :: a, r(3)
double precision, intent(out) :: b(3)
! TODO
end subroutine drift
#+END_SRC
**** Fortran :solution:
#+BEGIN_SRC f90 :tangle hydrogen.f90
subroutine drift(a,r,b)
implicit none
@ -1579,14 +1596,38 @@ end subroutine drift
(This is a necessary step for the next section).
#+end_exercise
*Python*
**** Python
#+BEGIN_SRC python :results output :tangle none
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a,nmax,tau):
# TODO
# Run simulation
a = 0.9
nmax = 100000
tau = 1.3
X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
# Energy
X = [ x for (x, _) in X0 ]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")
#+END_SRC
**** Python :solution:
#+BEGIN_SRC python :results output
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a,tau,nmax):
E = 0.
N = 0.
def MonteCarlo(a,nmax,tau):
energy = 0.
accep_rate = 0.
sq_tau = np.sqrt(tau)
r_old = np.random.normal(loc=0., scale=1.0, size=(3))
@ -1610,25 +1651,77 @@ def MonteCarlo(a,tau,nmax):
d_old = d_new
d2_old = d2_new
psi_old = psi_new
N += 1.
E += e_loc(a,r_old)
return E/N, accep_rate/N
energy += e_loc(a,r_old)
return energy/nmax, accep_rate/nmax
# Run simulation
a = 0.9
nmax = 100000
tau = 1.0
X = [MonteCarlo(a,tau,nmax) for i in range(30)]
E, deltaE = ave_error([x[0] for x in X])
A, deltaA = ave_error([x[1] for x in X])
print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}")
tau = 1.3
X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
# Energy
X = [ x for (x, _) in X0 ]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")
#+END_SRC
#+RESULTS:
: E = -0.4949730317138491 +/- 0.00012478601801760644
: A = 0.7887163333333334 +/- 0.00026834549840347617
: E = -0.4951317910667116 +/- 0.00014045774335059988
: A = 0.7200673333333333 +/- 0.00045942791345632793
*Fortran*
**** Fortran
#+BEGIN_SRC f90 :tangle none
subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
implicit none
double precision, intent(in) :: a, tau
integer*8 , intent(in) :: nmax
double precision, intent(out) :: energy, accep_rate
integer*8 :: istep
double precision :: sq_tau, chi(3)
double precision :: psi_old, psi_new
double precision :: r_old(3), r_new(3)
double precision :: d_old(3), d_new(3)
double precision, external :: e_loc, psi
! TODO
end subroutine variational_montecarlo
program qmc
implicit none
double precision, parameter :: a = 0.9
double precision, parameter :: tau = 1.0
integer*8 , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns), accep(nruns)
double precision :: ave, err
do irun=1,nruns
call variational_montecarlo(a,tau,nmax,X(irun),accep(irun))
enddo
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
call ave_error(accep,nruns,ave,err)
print *, 'A = ', ave, '+/-', err
end program qmc
#+END_SRC
#+begin_src sh :results output :exports both
gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
./vmc_metropolis
#+end_src
**** Fortran :solution:
#+BEGIN_SRC f90
subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
implicit none
@ -1637,7 +1730,7 @@ subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
double precision, intent(out) :: energy, accep_rate
integer*8 :: istep
double precision :: norm, sq_tau, chi(3), d2_old, prod, u
double precision :: sq_tau, chi(3), d2_old, prod, u
double precision :: psi_old, psi_new, d2_new, argexpo, q
double precision :: r_old(3), r_new(3)
double precision :: d_old(3), d_new(3)
@ -1647,7 +1740,6 @@ subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
! Initialization
energy = 0.d0
norm = 0.d0
accep_rate = 0.d0
call random_gauss(r_old,3)
call drift(a,r_old,d_old)
@ -1675,11 +1767,10 @@ subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
d2_old = d2_new
psi_old = psi_new
end if
norm = norm + 1.d0
energy = energy + e_loc(a,r_old)
end do
energy = energy / norm
accep_rate = accep_rate / norm
energy = energy / dble(nmax)
accep_rate = dble(accep_rate) / dble(nmax)
end subroutine variational_montecarlo
program qmc
@ -1709,8 +1800,8 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
#+end_src
#+RESULTS:
: E = -0.49499990423528023 +/- 1.5958250761863871E-004
: A = 0.78861366666666655 +/- 3.5096729498002445E-004
: E = -0.49495906384751226 +/- 1.5257646086088266E-004
: A = 0.78861366666666666 +/- 3.7855335138754813E-004
* TODO Diffusion Monte Carlo
:PROPERTIES:
@ -1733,10 +1824,10 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a,tau,nmax,Eref):
E = 0.
N = 0.
accep_rate = 0.
def MonteCarlo(a,nmax,tau,Eref):
energy = 0.
normalization = 0.
accep_rate = 0
sq_tau = np.sqrt(tau)
r_old = np.random.normal(loc=0., scale=1.0, size=(3))
d_old = drift(a,r_old)
@ -1747,8 +1838,8 @@ def MonteCarlo(a,tau,nmax,Eref):
chi = np.random.normal(loc=0., scale=1.0, size=(3))
el = e_loc(a,r_old)
w *= np.exp(-tau*(el - Eref))
N += w
E += w * el
normalization += w
energy += w * el
r_new = r_old + tau * d_old + sq_tau * chi
d_new = drift(a,r_new)
@ -1761,18 +1852,19 @@ def MonteCarlo(a,tau,nmax,Eref):
q = np.exp(-argexpo) * q*q
# PDMC weight
if np.random.uniform() < q:
accep_rate += w
accep_rate += 1
r_old = r_new
d_old = d_new
d2_old = d2_new
psi_old = psi_new
return E/N, accep_rate/N
return energy/normalization, accep_rate/nmax
a = 0.9
nmax = 10000
tau = .1
X = [MonteCarlo(a,tau,nmax,-0.5) for i in range(30)]
E_ref = -0.5
X = [MonteCarlo(a,nmax,tau,E_ref) for i in range(30)]
E, deltaE = ave_error([x[0] for x in X])
A, deltaA = ave_error([x[1] for x in X])
print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}")
@ -1782,7 +1874,7 @@ print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}")
: E = -0.49654807434947584 +/- 0.0006868522447409156
: A = 0.9876193891840709 +/- 0.00041857361650995804
*Fortran*
**** Fortran
#+BEGIN_SRC f90
subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
implicit none
@ -1924,7 +2016,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
the statistical error?
#+end_exercise
*Python*
**** Python
#+BEGIN_SRC python :results output
from hydrogen import *
from qmc_stats import *
@ -1954,7 +2046,7 @@ print(f"E = {E} +/- {deltaE}")
#+RESULTS:
: E = -0.49511014287471955 +/- 0.00012402022172236656
*Fortran*
**** Fortran
#+BEGIN_SRC f90
double precision function gaussian(r)
implicit none

View File

@ -5,7 +5,7 @@ subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
double precision, intent(out) :: energy, accep_rate
integer*8 :: istep
double precision :: norm, sq_tau, chi(3), d2_old, prod, u
double precision :: sq_tau, chi(3), d2_old, prod, u
double precision :: psi_old, psi_new, d2_new, argexpo, q
double precision :: r_old(3), r_new(3)
double precision :: d_old(3), d_new(3)
@ -15,7 +15,6 @@ subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
! Initialization
energy = 0.d0
norm = 0.d0
accep_rate = 0.d0
call random_gauss(r_old,3)
call drift(a,r_old,d_old)
@ -43,11 +42,10 @@ subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
d2_old = d2_new
psi_old = psi_new
end if
norm = norm + 1.d0
energy = energy + e_loc(a,r_old)
end do
energy = energy / norm
accep_rate = accep_rate / norm
energy = energy / dble(nmax)
accep_rate = dble(accep_rate) / dble(nmax)
end subroutine variational_montecarlo
program qmc

View File

@ -1,9 +1,8 @@
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a,tau,nmax):
def MonteCarlo(a,nmax,tau):
E = 0.
N = 0.
accep_rate = 0.
sq_tau = np.sqrt(tau)
r_old = np.random.normal(loc=0., scale=1.0, size=(3))
@ -27,15 +26,22 @@ def MonteCarlo(a,tau,nmax):
d_old = d_new
d2_old = d2_new
psi_old = psi_new
N += 1.
E += e_loc(a,r_old)
return E/N, accep_rate/N
return E/nmax, accep_rate/nmax
# Run simulation
a = 0.9
nmax = 100000
tau = 1.0
X = [MonteCarlo(a,tau,nmax) for i in range(30)]
E, deltaE = ave_error([x[0] for x in X])
A, deltaA = ave_error([x[1] for x in X])
print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}")
tau = 1.3
X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
# Energy
X = [ x for (x, _) in X0 ]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")