1
0
mirror of https://github.com/TREX-CoE/qmc-lttc.git synced 2024-12-21 11:53:58 +01:00

OK up to DMC

This commit is contained in:
Anthony Scemama 2021-01-26 13:11:57 +01:00
parent 94971bc5ea
commit dd40ff74d1
4 changed files with 225 additions and 129 deletions

314
QMC.org
View File

@ -1428,7 +1428,7 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_metropolis.f90 -o qmc_metropolis
: E = -0.49515370205041676 +/- 1.7660819245720729E-004 : E = -0.49515370205041676 +/- 1.7660819245720729E-004
: A = 0.51713866666666664 +/- 3.7072551835783688E-004 : A = 0.51713866666666664 +/- 3.7072551835783688E-004
** TODO Gaussian random number generator ** Gaussian random number generator
To obtain Gaussian-distributed random numbers, you can apply the To obtain Gaussian-distributed random numbers, you can apply the
[[https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform][Box Muller transform]] to uniform random numbers: [[https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform][Box Muller transform]] to uniform random numbers:
@ -1473,15 +1473,16 @@ subroutine random_gauss(z,n)
end subroutine random_gauss end subroutine random_gauss
#+END_SRC #+END_SRC
** TODO Generalized Metropolis algorithm In Python, you can use the [[https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html][~random.normal~]] function of Numpy.
** Generalized Metropolis algorithm
:PROPERTIES: :PROPERTIES:
:header-args:python: :tangle vmc_metropolis.py :header-args:python: :tangle vmc_metropolis.py
:header-args:f90: :tangle vmc_metropolis.f90 :header-args:f90: :tangle vmc_metropolis.f90
:END: :END:
One can use more efficient numerical schemes to move the electrons. One can use more efficient numerical schemes to move the electrons,
But in that case, the Metropolis accepation step has to be adapted but the Metropolis accepation step has to be adapted accordingly:
accordingly: the acceptance the acceptance
probability $A$ is chosen so that it is consistent with the probability $A$ is chosen so that it is consistent with the
probability of leaving $\mathbf{r}_n$ and the probability of probability of leaving $\mathbf{r}_n$ and the probability of
entering $\mathbf{r}_{n+1}$: entering $\mathbf{r}_{n+1}$:
@ -1499,19 +1500,19 @@ end subroutine random_gauss
numbers. Hence, the transition probability was numbers. Hence, the transition probability was
\[ \[
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) & = & T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) =
\text{constant} \text{constant}
\] \]
So the expression of $A$ was simplified to the ratios of the squared so the expression of $A$ was simplified to the ratios of the squared
wave functions. wave functions.
Now, if instead of drawing uniform random numbers Now, if instead of drawing uniform random numbers we
choose to draw Gaussian random numbers with mean 0 and variance choose to draw Gaussian random numbers with zero mean and variance
$\tau$, the transition probability becomes: $\tau$, the transition probability becomes:
\[ \[
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) & = & T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) =
\frac{1}{(2\pi\,\tau)^{3/2}} \exp \left[ - \frac{\left( \frac{1}{(2\pi\,\tau)^{3/2}} \exp \left[ - \frac{\left(
\mathbf{r}_{n+1} - \mathbf{r}_{n} \right)^2}{2\tau} \right] \mathbf{r}_{n+1} - \mathbf{r}_{n} \right)^2}{2\tau} \right]
\] \]
@ -1525,8 +1526,8 @@ end subroutine random_gauss
To do this, we can add the drift vector To do this, we can add the drift vector
\[ \[
\frac{\nabla [ \Psi^2 ]}{\Psi^2} = 2 \frac{\nabla \Psi}{\Psi} \frac{\nabla [ \Psi^2 ]}{\Psi^2} = 2 \frac{\nabla \Psi}{\Psi}.
\]. \]
The numerical scheme becomes a drifted diffusion: The numerical scheme becomes a drifted diffusion:
@ -1540,7 +1541,7 @@ end subroutine random_gauss
The transition probability becomes: The transition probability becomes:
\[ \[
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) & = & T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) =
\frac{1}{(2\pi\,\tau)^{3/2}} \exp \left[ - \frac{\left( \frac{1}{(2\pi\,\tau)^{3/2}} \exp \left[ - \frac{\left(
\mathbf{r}_{n+1} - \mathbf{r}_{n} - \frac{\nabla \mathbf{r}_{n+1} - \mathbf{r}_{n} - \frac{\nabla
\Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{2\,\tau} \right] \Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{2\,\tau} \right]
@ -1548,19 +1549,35 @@ end subroutine random_gauss
*** Exercise 1 *** Exercise 1
#+begin_exercise #+begin_exercise
Write a function to compute the drift vector $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$. Write a function to compute the drift vector $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$.
#+end_exercise #+end_exercise
*Python* **** Python
#+BEGIN_SRC python :tangle hydrogen.py #+BEGIN_SRC python :tangle hydrogen.py :tangle none
def drift(a,r): def drift(a,r):
ar_inv = -a/np.sqrt(np.dot(r,r)) # TODO
return r * ar_inv
#+END_SRC #+END_SRC
*Fortran* **** Python :solution:
#+BEGIN_SRC python :tangle hydrogen.py
def drift(a,r):
ar_inv = -a/np.sqrt(np.dot(r,r))
return r * ar_inv
#+END_SRC
**** Fortran
#+BEGIN_SRC f90 :tangle hydrogen.f90 :tangle none
subroutine drift(a,r,b)
implicit none
double precision, intent(in) :: a, r(3)
double precision, intent(out) :: b(3)
! TODO
end subroutine drift
#+END_SRC
**** Fortran :solution:
#+BEGIN_SRC f90 :tangle hydrogen.f90 #+BEGIN_SRC f90 :tangle hydrogen.f90
subroutine drift(a,r,b) subroutine drift(a,r,b)
implicit none implicit none
@ -1579,14 +1596,38 @@ end subroutine drift
(This is a necessary step for the next section). (This is a necessary step for the next section).
#+end_exercise #+end_exercise
*Python* **** Python
#+BEGIN_SRC python :results output #+BEGIN_SRC python :results output :tangle none
from hydrogen import * from hydrogen import *
from qmc_stats import * from qmc_stats import *
def MonteCarlo(a,tau,nmax): def MonteCarlo(a,nmax,tau):
E = 0. # TODO
N = 0.
# Run simulation
a = 0.9
nmax = 100000
tau = 1.3
X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
# Energy
X = [ x for (x, _) in X0 ]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")
#+END_SRC
**** Python :solution:
#+BEGIN_SRC python :results output
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a,nmax,tau):
energy = 0.
accep_rate = 0. accep_rate = 0.
sq_tau = np.sqrt(tau) sq_tau = np.sqrt(tau)
r_old = np.random.normal(loc=0., scale=1.0, size=(3)) r_old = np.random.normal(loc=0., scale=1.0, size=(3))
@ -1610,26 +1651,33 @@ def MonteCarlo(a,tau,nmax):
d_old = d_new d_old = d_new
d2_old = d2_new d2_old = d2_new
psi_old = psi_new psi_old = psi_new
N += 1. energy += e_loc(a,r_old)
E += e_loc(a,r_old) return energy/nmax, accep_rate/nmax
return E/N, accep_rate/N
# Run simulation
a = 0.9 a = 0.9
nmax = 100000 nmax = 100000
tau = 1.0 tau = 1.3
X = [MonteCarlo(a,tau,nmax) for i in range(30)] X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
E, deltaE = ave_error([x[0] for x in X])
A, deltaA = ave_error([x[1] for x in X])
print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}")
#+END_SRC
#+RESULTS: # Energy
: E = -0.4949730317138491 +/- 0.00012478601801760644 X = [ x for (x, _) in X0 ]
: A = 0.7887163333333334 +/- 0.00026834549840347617 E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")
#+END_SRC
#+RESULTS:
: E = -0.4951317910667116 +/- 0.00014045774335059988
: A = 0.7200673333333333 +/- 0.00045942791345632793
*Fortran* **** Fortran
#+BEGIN_SRC f90 #+BEGIN_SRC f90 :tangle none
subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate) subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
implicit none implicit none
double precision, intent(in) :: a, tau double precision, intent(in) :: a, tau
@ -1637,49 +1685,14 @@ subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
double precision, intent(out) :: energy, accep_rate double precision, intent(out) :: energy, accep_rate
integer*8 :: istep integer*8 :: istep
double precision :: norm, sq_tau, chi(3), d2_old, prod, u double precision :: sq_tau, chi(3)
double precision :: psi_old, psi_new, d2_new, argexpo, q double precision :: psi_old, psi_new
double precision :: r_old(3), r_new(3) double precision :: r_old(3), r_new(3)
double precision :: d_old(3), d_new(3) double precision :: d_old(3), d_new(3)
double precision, external :: e_loc, psi double precision, external :: e_loc, psi
sq_tau = dsqrt(tau) ! TODO
! Initialization
energy = 0.d0
norm = 0.d0
accep_rate = 0.d0
call random_gauss(r_old,3)
call drift(a,r_old,d_old)
d2_old = d_old(1)*d_old(1) + d_old(2)*d_old(2) + d_old(3)*d_old(3)
psi_old = psi(a,r_old)
do istep = 1,nmax
call random_gauss(chi,3)
r_new(:) = r_old(:) + tau * d_old(:) + chi(:)*sq_tau
call drift(a,r_new,d_new)
d2_new = d_new(1)*d_new(1) + d_new(2)*d_new(2) + d_new(3)*d_new(3)
psi_new = psi(a,r_new)
! Metropolis
prod = (d_new(1) + d_old(1))*(r_new(1) - r_old(1)) + &
(d_new(2) + d_old(2))*(r_new(2) - r_old(2)) + &
(d_new(3) + d_old(3))*(r_new(3) - r_old(3))
argexpo = 0.5d0 * (d2_new - d2_old)*tau + prod
q = psi_new / psi_old
q = dexp(-argexpo) * q*q
call random_number(u)
if (u<q) then
accep_rate = accep_rate + 1.d0
r_old(:) = r_new(:)
d_old(:) = d_new(:)
d2_old = d2_new
psi_old = psi_new
end if
norm = norm + 1.d0
energy = energy + e_loc(a,r_old)
end do
energy = energy / norm
accep_rate = accep_rate / norm
end subroutine variational_montecarlo end subroutine variational_montecarlo
program qmc program qmc
@ -1701,16 +1714,94 @@ program qmc
call ave_error(accep,nruns,ave,err) call ave_error(accep,nruns,ave,err)
print *, 'A = ', ave, '+/-', err print *, 'A = ', ave, '+/-', err
end program qmc end program qmc
#+END_SRC #+END_SRC
#+begin_src sh :results output :exports both #+begin_src sh :results output :exports both
gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
./vmc_metropolis ./vmc_metropolis
#+end_src #+end_src
#+RESULTS: **** Fortran :solution:
: E = -0.49499990423528023 +/- 1.5958250761863871E-004 #+BEGIN_SRC f90
: A = 0.78861366666666655 +/- 3.5096729498002445E-004 subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
implicit none
double precision, intent(in) :: a, tau
integer*8 , intent(in) :: nmax
double precision, intent(out) :: energy, accep_rate
integer*8 :: istep
double precision :: sq_tau, chi(3), d2_old, prod, u
double precision :: psi_old, psi_new, d2_new, argexpo, q
double precision :: r_old(3), r_new(3)
double precision :: d_old(3), d_new(3)
double precision, external :: e_loc, psi
sq_tau = dsqrt(tau)
! Initialization
energy = 0.d0
accep_rate = 0.d0
call random_gauss(r_old,3)
call drift(a,r_old,d_old)
d2_old = d_old(1)*d_old(1) + d_old(2)*d_old(2) + d_old(3)*d_old(3)
psi_old = psi(a,r_old)
do istep = 1,nmax
call random_gauss(chi,3)
r_new(:) = r_old(:) + tau * d_old(:) + chi(:)*sq_tau
call drift(a,r_new,d_new)
d2_new = d_new(1)*d_new(1) + d_new(2)*d_new(2) + d_new(3)*d_new(3)
psi_new = psi(a,r_new)
! Metropolis
prod = (d_new(1) + d_old(1))*(r_new(1) - r_old(1)) + &
(d_new(2) + d_old(2))*(r_new(2) - r_old(2)) + &
(d_new(3) + d_old(3))*(r_new(3) - r_old(3))
argexpo = 0.5d0 * (d2_new - d2_old)*tau + prod
q = psi_new / psi_old
q = dexp(-argexpo) * q*q
call random_number(u)
if (u<q) then
accep_rate = accep_rate + 1.d0
r_old(:) = r_new(:)
d_old(:) = d_new(:)
d2_old = d2_new
psi_old = psi_new
end if
energy = energy + e_loc(a,r_old)
end do
energy = energy / dble(nmax)
accep_rate = dble(accep_rate) / dble(nmax)
end subroutine variational_montecarlo
program qmc
implicit none
double precision, parameter :: a = 0.9
double precision, parameter :: tau = 1.0
integer*8 , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns), accep(nruns)
double precision :: ave, err
do irun=1,nruns
call variational_montecarlo(a,tau,nmax,X(irun),accep(irun))
enddo
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
call ave_error(accep,nruns,ave,err)
print *, 'A = ', ave, '+/-', err
end program qmc
#+END_SRC
#+begin_src sh :results output :exports both
gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
./vmc_metropolis
#+end_src
#+RESULTS:
: E = -0.49495906384751226 +/- 1.5257646086088266E-004
: A = 0.78861366666666666 +/- 3.7855335138754813E-004
* TODO Diffusion Monte Carlo * TODO Diffusion Monte Carlo
:PROPERTIES: :PROPERTIES:
@ -1733,10 +1824,10 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
from hydrogen import * from hydrogen import *
from qmc_stats import * from qmc_stats import *
def MonteCarlo(a,tau,nmax,Eref): def MonteCarlo(a,nmax,tau,Eref):
E = 0. energy = 0.
N = 0. normalization = 0.
accep_rate = 0. accep_rate = 0
sq_tau = np.sqrt(tau) sq_tau = np.sqrt(tau)
r_old = np.random.normal(loc=0., scale=1.0, size=(3)) r_old = np.random.normal(loc=0., scale=1.0, size=(3))
d_old = drift(a,r_old) d_old = drift(a,r_old)
@ -1747,8 +1838,8 @@ def MonteCarlo(a,tau,nmax,Eref):
chi = np.random.normal(loc=0., scale=1.0, size=(3)) chi = np.random.normal(loc=0., scale=1.0, size=(3))
el = e_loc(a,r_old) el = e_loc(a,r_old)
w *= np.exp(-tau*(el - Eref)) w *= np.exp(-tau*(el - Eref))
N += w normalization += w
E += w * el energy += w * el
r_new = r_old + tau * d_old + sq_tau * chi r_new = r_old + tau * d_old + sq_tau * chi
d_new = drift(a,r_new) d_new = drift(a,r_new)
@ -1761,18 +1852,19 @@ def MonteCarlo(a,tau,nmax,Eref):
q = np.exp(-argexpo) * q*q q = np.exp(-argexpo) * q*q
# PDMC weight # PDMC weight
if np.random.uniform() < q: if np.random.uniform() < q:
accep_rate += w accep_rate += 1
r_old = r_new r_old = r_new
d_old = d_new d_old = d_new
d2_old = d2_new d2_old = d2_new
psi_old = psi_new psi_old = psi_new
return E/N, accep_rate/N return energy/normalization, accep_rate/nmax
a = 0.9 a = 0.9
nmax = 10000 nmax = 10000
tau = .1 tau = .1
X = [MonteCarlo(a,tau,nmax,-0.5) for i in range(30)] E_ref = -0.5
X = [MonteCarlo(a,nmax,tau,E_ref) for i in range(30)]
E, deltaE = ave_error([x[0] for x in X]) E, deltaE = ave_error([x[0] for x in X])
A, deltaA = ave_error([x[1] for x in X]) A, deltaA = ave_error([x[1] for x in X])
print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}") print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}")
@ -1782,8 +1874,8 @@ print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}")
: E = -0.49654807434947584 +/- 0.0006868522447409156 : E = -0.49654807434947584 +/- 0.0006868522447409156
: A = 0.9876193891840709 +/- 0.00041857361650995804 : A = 0.9876193891840709 +/- 0.00041857361650995804
*Fortran* **** Fortran
#+BEGIN_SRC f90 #+BEGIN_SRC f90
subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate) subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
implicit none implicit none
double precision, intent(in) :: a, tau double precision, intent(in) :: a, tau
@ -1855,16 +1947,16 @@ program qmc
call ave_error(accep,nruns,ave,err) call ave_error(accep,nruns,ave,err)
print *, 'A = ', ave, '+/-', err print *, 'A = ', ave, '+/-', err
end program qmc end program qmc
#+END_SRC #+END_SRC
#+begin_src sh :results output :exports both #+begin_src sh :results output :exports both
gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
./vmc_metropolis ./vmc_metropolis
#+end_src #+end_src
#+RESULTS: #+RESULTS:
: E = -0.49499990423528023 +/- 1.5958250761863871E-004 : E = -0.49499990423528023 +/- 1.5958250761863871E-004
: A = 0.78861366666666655 +/- 3.5096729498002445E-004 : A = 0.78861366666666655 +/- 3.5096729498002445E-004
** TODO Dihydrogen ** TODO Dihydrogen
@ -1924,8 +2016,8 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
the statistical error? the statistical error?
#+end_exercise #+end_exercise
*Python* **** Python
#+BEGIN_SRC python :results output #+BEGIN_SRC python :results output
from hydrogen import * from hydrogen import *
from qmc_stats import * from qmc_stats import *
@ -1949,13 +2041,13 @@ nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)] X = [MonteCarlo(a,nmax) for i in range(30)]
E, deltaE = ave_error(X) E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}") print(f"E = {E} +/- {deltaE}")
#+END_SRC #+END_SRC
#+RESULTS: #+RESULTS:
: E = -0.49511014287471955 +/- 0.00012402022172236656 : E = -0.49511014287471955 +/- 0.00012402022172236656
*Fortran* **** Fortran
#+BEGIN_SRC f90 #+BEGIN_SRC f90
double precision function gaussian(r) double precision function gaussian(r)
implicit none implicit none
double precision, intent(in) :: r(3) double precision, intent(in) :: r(3)
@ -2004,15 +2096,15 @@ program qmc
call ave_error(X,nruns,ave,err) call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err print *, 'E = ', ave, '+/-', err
end program qmc end program qmc
#+END_SRC #+END_SRC
#+begin_src sh :results output :exports both #+begin_src sh :results output :exports both
gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian
./qmc_gaussian ./qmc_gaussian
#+end_src #+end_src
#+RESULTS: #+RESULTS:
: E = -0.49517104619091717 +/- 1.0685523607878961E-004 : E = -0.49517104619091717 +/- 1.0685523607878961E-004
** Improved sampling with $\Psi^2$ :noexport: ** Improved sampling with $\Psi^2$ :noexport:

View File

@ -17,5 +17,5 @@ def e_loc(a,r):
return kinetic(a,r) + potential(r) return kinetic(a,r) + potential(r)
def drift(a,r): def drift(a,r):
ar_inv = -a/np.sqrt(np.dot(r,r)) ar_inv = -a/np.sqrt(np.dot(r,r))
return r * ar_inv return r * ar_inv

View File

@ -5,7 +5,7 @@ subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
double precision, intent(out) :: energy, accep_rate double precision, intent(out) :: energy, accep_rate
integer*8 :: istep integer*8 :: istep
double precision :: norm, sq_tau, chi(3), d2_old, prod, u double precision :: sq_tau, chi(3), d2_old, prod, u
double precision :: psi_old, psi_new, d2_new, argexpo, q double precision :: psi_old, psi_new, d2_new, argexpo, q
double precision :: r_old(3), r_new(3) double precision :: r_old(3), r_new(3)
double precision :: d_old(3), d_new(3) double precision :: d_old(3), d_new(3)
@ -15,7 +15,6 @@ subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
! Initialization ! Initialization
energy = 0.d0 energy = 0.d0
norm = 0.d0
accep_rate = 0.d0 accep_rate = 0.d0
call random_gauss(r_old,3) call random_gauss(r_old,3)
call drift(a,r_old,d_old) call drift(a,r_old,d_old)
@ -30,8 +29,8 @@ subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
psi_new = psi(a,r_new) psi_new = psi(a,r_new)
! Metropolis ! Metropolis
prod = (d_new(1) + d_old(1))*(r_new(1) - r_old(1)) + & prod = (d_new(1) + d_old(1))*(r_new(1) - r_old(1)) + &
(d_new(2) + d_old(2))*(r_new(2) - r_old(2)) + & (d_new(2) + d_old(2))*(r_new(2) - r_old(2)) + &
(d_new(3) + d_old(3))*(r_new(3) - r_old(3)) (d_new(3) + d_old(3))*(r_new(3) - r_old(3))
argexpo = 0.5d0 * (d2_new - d2_old)*tau + prod argexpo = 0.5d0 * (d2_new - d2_old)*tau + prod
q = psi_new / psi_old q = psi_new / psi_old
q = dexp(-argexpo) * q*q q = dexp(-argexpo) * q*q
@ -43,11 +42,10 @@ subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
d2_old = d2_new d2_old = d2_new
psi_old = psi_new psi_old = psi_new
end if end if
norm = norm + 1.d0
energy = energy + e_loc(a,r_old) energy = energy + e_loc(a,r_old)
end do end do
energy = energy / norm energy = energy / dble(nmax)
accep_rate = accep_rate / norm accep_rate = dble(accep_rate) / dble(nmax)
end subroutine variational_montecarlo end subroutine variational_montecarlo
program qmc program qmc

View File

@ -1,9 +1,8 @@
from hydrogen import * from hydrogen import *
from qmc_stats import * from qmc_stats import *
def MonteCarlo(a,tau,nmax): def MonteCarlo(a,nmax,tau):
E = 0. E = 0.
N = 0.
accep_rate = 0. accep_rate = 0.
sq_tau = np.sqrt(tau) sq_tau = np.sqrt(tau)
r_old = np.random.normal(loc=0., scale=1.0, size=(3)) r_old = np.random.normal(loc=0., scale=1.0, size=(3))
@ -27,15 +26,22 @@ def MonteCarlo(a,tau,nmax):
d_old = d_new d_old = d_new
d2_old = d2_new d2_old = d2_new
psi_old = psi_new psi_old = psi_new
N += 1.
E += e_loc(a,r_old) E += e_loc(a,r_old)
return E/N, accep_rate/N return E/nmax, accep_rate/nmax
# Run simulation
a = 0.9 a = 0.9
nmax = 100000 nmax = 100000
tau = 1.0 tau = 1.3
X = [MonteCarlo(a,tau,nmax) for i in range(30)] X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
E, deltaE = ave_error([x[0] for x in X])
A, deltaA = ave_error([x[1] for x in X]) # Energy
print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}") X = [ x for (x, _) in X0 ]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
# Acceptance rate
X = [ x for (_, x) in X0 ]
A, deltaA = ave_error(X)
print(f"A = {A} +/- {deltaA}")