mirror of
https://github.com/TREX-CoE/qmc-lttc.git
synced 2024-12-21 11:53:58 +01:00
Moved Gaussian RNG in generalized metropolis section
This commit is contained in:
parent
9c937da308
commit
dbf3f108a0
115
QMC.org
115
QMC.org
@ -1297,16 +1297,9 @@ print(f"E = {E} +/- {deltaE}")
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
: E = -0.4773221805255284 +/- 0.0022489426510479975
|
||||
: E = -0.48363807880008725 +/- 0.002330876047368999
|
||||
|
||||
*Fortran*
|
||||
#+begin_note
|
||||
When running Monte Carlo calculations, the number of steps is
|
||||
usually very large. We expect =nmax= to be possibly larger than 2
|
||||
billion, so we use 8-byte integers (=integer*8=) to represent it, as
|
||||
well as the index of the current step.
|
||||
#+end_note
|
||||
|
||||
#+BEGIN_SRC f90 :exports code
|
||||
subroutine uniform_montecarlo(a,nmax,energy)
|
||||
implicit none
|
||||
@ -1703,58 +1696,6 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_metropolis.f90 -o qmc_metropolis
|
||||
: E = -0.47948142754168033 +/- 4.8410177863919307E-004
|
||||
: A = 0.50762633333333318 +/- 3.4601756760043725E-004
|
||||
|
||||
** Gaussian random number generator
|
||||
|
||||
To obtain Gaussian-distributed random numbers, you can apply the
|
||||
[[https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform][Box Muller transform]] to uniform random numbers:
|
||||
|
||||
\begin{eqnarray*}
|
||||
z_1 &=& \sqrt{-2 \ln u_1} \cos(2 \pi u_2) \\
|
||||
z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2)
|
||||
\end{eqnarray*}
|
||||
|
||||
Below is a Fortran implementation returning a Gaussian-distributed
|
||||
n-dimensional vector $\mathbf{z}$. This will be useful for the
|
||||
following sections.
|
||||
|
||||
*Fortran*
|
||||
#+BEGIN_SRC f90 :tangle qmc_stats.f90
|
||||
subroutine random_gauss(z,n)
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
double precision, intent(out) :: z(n)
|
||||
double precision :: u(n+1)
|
||||
double precision, parameter :: two_pi = 2.d0*dacos(-1.d0)
|
||||
integer :: i
|
||||
|
||||
call random_number(u)
|
||||
|
||||
if (iand(n,1) == 0) then
|
||||
! n is even
|
||||
do i=1,n,2
|
||||
z(i) = dsqrt(-2.d0*dlog(u(i)))
|
||||
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
|
||||
z(i) = z(i) * dcos( two_pi*u(i+1) )
|
||||
end do
|
||||
|
||||
else
|
||||
! n is odd
|
||||
do i=1,n-1,2
|
||||
z(i) = dsqrt(-2.d0*dlog(u(i)))
|
||||
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
|
||||
z(i) = z(i) * dcos( two_pi*u(i+1) )
|
||||
end do
|
||||
|
||||
z(n) = dsqrt(-2.d0*dlog(u(n)))
|
||||
z(n) = z(n) * dcos( two_pi*u(n+1) )
|
||||
|
||||
end if
|
||||
|
||||
end subroutine random_gauss
|
||||
#+END_SRC
|
||||
|
||||
In Python, you can use the [[https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html][~random.normal~]] function of Numpy.
|
||||
|
||||
** Generalized Metropolis algorithm
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle vmc_metropolis.py
|
||||
@ -1782,7 +1723,7 @@ end subroutine random_gauss
|
||||
|
||||
\[
|
||||
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = T(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n})
|
||||
\text{constant}\,,
|
||||
= \text{constant}\,,
|
||||
\]
|
||||
|
||||
so the expression of $A$ was simplified to the ratios of the squared
|
||||
@ -1844,6 +1785,58 @@ end subroutine random_gauss
|
||||
5) else, reject the move : set $\mathbf{r}_{n+1} = \mathbf{r}_n$
|
||||
6) evaluate the local energy at $\mathbf{r}_{n+1}$
|
||||
|
||||
*** Gaussian random number generator
|
||||
|
||||
To obtain Gaussian-distributed random numbers, you can apply the
|
||||
[[https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform][Box Muller transform]] to uniform random numbers:
|
||||
|
||||
\begin{eqnarray*}
|
||||
z_1 &=& \sqrt{-2 \ln u_1} \cos(2 \pi u_2) \\
|
||||
z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2)
|
||||
\end{eqnarray*}
|
||||
|
||||
Below is a Fortran implementation returning a Gaussian-distributed
|
||||
n-dimensional vector $\mathbf{z}$. This will be useful for the
|
||||
following sections.
|
||||
|
||||
*Fortran*
|
||||
#+BEGIN_SRC f90 :tangle qmc_stats.f90
|
||||
subroutine random_gauss(z,n)
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
double precision, intent(out) :: z(n)
|
||||
double precision :: u(n+1)
|
||||
double precision, parameter :: two_pi = 2.d0*dacos(-1.d0)
|
||||
integer :: i
|
||||
|
||||
call random_number(u)
|
||||
|
||||
if (iand(n,1) == 0) then
|
||||
! n is even
|
||||
do i=1,n,2
|
||||
z(i) = dsqrt(-2.d0*dlog(u(i)))
|
||||
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
|
||||
z(i) = z(i) * dcos( two_pi*u(i+1) )
|
||||
end do
|
||||
|
||||
else
|
||||
! n is odd
|
||||
do i=1,n-1,2
|
||||
z(i) = dsqrt(-2.d0*dlog(u(i)))
|
||||
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
|
||||
z(i) = z(i) * dcos( two_pi*u(i+1) )
|
||||
end do
|
||||
|
||||
z(n) = dsqrt(-2.d0*dlog(u(n)))
|
||||
z(n) = z(n) * dcos( two_pi*u(n+1) )
|
||||
|
||||
end if
|
||||
|
||||
end subroutine random_gauss
|
||||
#+END_SRC
|
||||
|
||||
In Python, you can use the [[https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html][~random.normal~]] function of Numpy.
|
||||
|
||||
|
||||
*** Exercise 1
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user