mirror of
https://github.com/TREX-CoE/qmc-lttc.git
synced 2024-12-21 11:53:58 +01:00
Moved Gaussian RNG in generalized metropolis section
This commit is contained in:
parent
9c937da308
commit
dbf3f108a0
115
QMC.org
115
QMC.org
@ -1297,16 +1297,9 @@ print(f"E = {E} +/- {deltaE}")
|
|||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
: E = -0.4773221805255284 +/- 0.0022489426510479975
|
: E = -0.48363807880008725 +/- 0.002330876047368999
|
||||||
|
|
||||||
*Fortran*
|
*Fortran*
|
||||||
#+begin_note
|
|
||||||
When running Monte Carlo calculations, the number of steps is
|
|
||||||
usually very large. We expect =nmax= to be possibly larger than 2
|
|
||||||
billion, so we use 8-byte integers (=integer*8=) to represent it, as
|
|
||||||
well as the index of the current step.
|
|
||||||
#+end_note
|
|
||||||
|
|
||||||
#+BEGIN_SRC f90 :exports code
|
#+BEGIN_SRC f90 :exports code
|
||||||
subroutine uniform_montecarlo(a,nmax,energy)
|
subroutine uniform_montecarlo(a,nmax,energy)
|
||||||
implicit none
|
implicit none
|
||||||
@ -1703,58 +1696,6 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_metropolis.f90 -o qmc_metropolis
|
|||||||
: E = -0.47948142754168033 +/- 4.8410177863919307E-004
|
: E = -0.47948142754168033 +/- 4.8410177863919307E-004
|
||||||
: A = 0.50762633333333318 +/- 3.4601756760043725E-004
|
: A = 0.50762633333333318 +/- 3.4601756760043725E-004
|
||||||
|
|
||||||
** Gaussian random number generator
|
|
||||||
|
|
||||||
To obtain Gaussian-distributed random numbers, you can apply the
|
|
||||||
[[https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform][Box Muller transform]] to uniform random numbers:
|
|
||||||
|
|
||||||
\begin{eqnarray*}
|
|
||||||
z_1 &=& \sqrt{-2 \ln u_1} \cos(2 \pi u_2) \\
|
|
||||||
z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2)
|
|
||||||
\end{eqnarray*}
|
|
||||||
|
|
||||||
Below is a Fortran implementation returning a Gaussian-distributed
|
|
||||||
n-dimensional vector $\mathbf{z}$. This will be useful for the
|
|
||||||
following sections.
|
|
||||||
|
|
||||||
*Fortran*
|
|
||||||
#+BEGIN_SRC f90 :tangle qmc_stats.f90
|
|
||||||
subroutine random_gauss(z,n)
|
|
||||||
implicit none
|
|
||||||
integer, intent(in) :: n
|
|
||||||
double precision, intent(out) :: z(n)
|
|
||||||
double precision :: u(n+1)
|
|
||||||
double precision, parameter :: two_pi = 2.d0*dacos(-1.d0)
|
|
||||||
integer :: i
|
|
||||||
|
|
||||||
call random_number(u)
|
|
||||||
|
|
||||||
if (iand(n,1) == 0) then
|
|
||||||
! n is even
|
|
||||||
do i=1,n,2
|
|
||||||
z(i) = dsqrt(-2.d0*dlog(u(i)))
|
|
||||||
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
|
|
||||||
z(i) = z(i) * dcos( two_pi*u(i+1) )
|
|
||||||
end do
|
|
||||||
|
|
||||||
else
|
|
||||||
! n is odd
|
|
||||||
do i=1,n-1,2
|
|
||||||
z(i) = dsqrt(-2.d0*dlog(u(i)))
|
|
||||||
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
|
|
||||||
z(i) = z(i) * dcos( two_pi*u(i+1) )
|
|
||||||
end do
|
|
||||||
|
|
||||||
z(n) = dsqrt(-2.d0*dlog(u(n)))
|
|
||||||
z(n) = z(n) * dcos( two_pi*u(n+1) )
|
|
||||||
|
|
||||||
end if
|
|
||||||
|
|
||||||
end subroutine random_gauss
|
|
||||||
#+END_SRC
|
|
||||||
|
|
||||||
In Python, you can use the [[https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html][~random.normal~]] function of Numpy.
|
|
||||||
|
|
||||||
** Generalized Metropolis algorithm
|
** Generalized Metropolis algorithm
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:header-args:python: :tangle vmc_metropolis.py
|
:header-args:python: :tangle vmc_metropolis.py
|
||||||
@ -1782,7 +1723,7 @@ end subroutine random_gauss
|
|||||||
|
|
||||||
\[
|
\[
|
||||||
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = T(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n})
|
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = T(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n})
|
||||||
\text{constant}\,,
|
= \text{constant}\,,
|
||||||
\]
|
\]
|
||||||
|
|
||||||
so the expression of $A$ was simplified to the ratios of the squared
|
so the expression of $A$ was simplified to the ratios of the squared
|
||||||
@ -1844,6 +1785,58 @@ end subroutine random_gauss
|
|||||||
5) else, reject the move : set $\mathbf{r}_{n+1} = \mathbf{r}_n$
|
5) else, reject the move : set $\mathbf{r}_{n+1} = \mathbf{r}_n$
|
||||||
6) evaluate the local energy at $\mathbf{r}_{n+1}$
|
6) evaluate the local energy at $\mathbf{r}_{n+1}$
|
||||||
|
|
||||||
|
*** Gaussian random number generator
|
||||||
|
|
||||||
|
To obtain Gaussian-distributed random numbers, you can apply the
|
||||||
|
[[https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform][Box Muller transform]] to uniform random numbers:
|
||||||
|
|
||||||
|
\begin{eqnarray*}
|
||||||
|
z_1 &=& \sqrt{-2 \ln u_1} \cos(2 \pi u_2) \\
|
||||||
|
z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2)
|
||||||
|
\end{eqnarray*}
|
||||||
|
|
||||||
|
Below is a Fortran implementation returning a Gaussian-distributed
|
||||||
|
n-dimensional vector $\mathbf{z}$. This will be useful for the
|
||||||
|
following sections.
|
||||||
|
|
||||||
|
*Fortran*
|
||||||
|
#+BEGIN_SRC f90 :tangle qmc_stats.f90
|
||||||
|
subroutine random_gauss(z,n)
|
||||||
|
implicit none
|
||||||
|
integer, intent(in) :: n
|
||||||
|
double precision, intent(out) :: z(n)
|
||||||
|
double precision :: u(n+1)
|
||||||
|
double precision, parameter :: two_pi = 2.d0*dacos(-1.d0)
|
||||||
|
integer :: i
|
||||||
|
|
||||||
|
call random_number(u)
|
||||||
|
|
||||||
|
if (iand(n,1) == 0) then
|
||||||
|
! n is even
|
||||||
|
do i=1,n,2
|
||||||
|
z(i) = dsqrt(-2.d0*dlog(u(i)))
|
||||||
|
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
|
||||||
|
z(i) = z(i) * dcos( two_pi*u(i+1) )
|
||||||
|
end do
|
||||||
|
|
||||||
|
else
|
||||||
|
! n is odd
|
||||||
|
do i=1,n-1,2
|
||||||
|
z(i) = dsqrt(-2.d0*dlog(u(i)))
|
||||||
|
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
|
||||||
|
z(i) = z(i) * dcos( two_pi*u(i+1) )
|
||||||
|
end do
|
||||||
|
|
||||||
|
z(n) = dsqrt(-2.d0*dlog(u(n)))
|
||||||
|
z(n) = z(n) * dcos( two_pi*u(n+1) )
|
||||||
|
|
||||||
|
end if
|
||||||
|
|
||||||
|
end subroutine random_gauss
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
In Python, you can use the [[https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html][~random.normal~]] function of Numpy.
|
||||||
|
|
||||||
|
|
||||||
*** Exercise 1
|
*** Exercise 1
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user