diff --git a/index.html b/index.html index 1f840db..cbc3560 100644 --- a/index.html +++ b/index.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- +We propose different exercises to understand quantum Monte Carlo (QMC) @@ -364,8 +364,8 @@ interpreted as a single precision value
In this section we consider the Hydrogen atom with the following @@ -439,13 +439,13 @@ E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle} \end{eqnarray*}
@@ -489,8 +489,8 @@ and returns the potential.
@@ -525,8 +525,8 @@ input arguments, and returns a scalar.
@@ -607,8 +607,8 @@ So the local kinetic energy is
@@ -651,14 +651,14 @@ local energy.
@@ -775,8 +775,8 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
If the space is discretized in small volume elements \(\mathbf{r}_i\) @@ -806,8 +806,8 @@ The energy is biased because:
@@ -917,8 +917,8 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002
The variance of the local energy is a functional of \(\Psi\) @@ -940,8 +940,8 @@ energy can be used as a measure of the quality of a wave function.
@@ -1083,8 +1083,8 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.806881
Numerical integration with deterministic methods is very efficient @@ -1100,8 +1100,8 @@ interval.
To compute the statistical error, you need to perform \(M\) @@ -1141,8 +1141,8 @@ And the confidence interval is given by
@@ -1191,8 +1191,8 @@ input array.
We will now do our first Monte Carlo calculation to compute the @@ -1226,8 +1226,8 @@ statistical error.
@@ -1337,8 +1337,8 @@ E = -0.49588321986667677 +/- 7.1758863546737969E-004
We will now improve the sampling and allow to sample in the whole @@ -1434,8 +1434,8 @@ average energy can be computed as
@@ -1546,8 +1546,8 @@ E = -0.49517104619091717 +/- 1.0685523607878961E-004
We will now use the square of the wave function to make the sampling: @@ -1572,8 +1572,8 @@ the local energies, each with a weight of 1.
To generate the probability density \(\Psi^2\), we consider a @@ -1686,7 +1686,7 @@ variance \(\tau\,2D\).
@@ -1722,7 +1722,7 @@ Write a function to compute the drift vector \(\frac{\nabla \Psi(\mathbf{r})}{\P
@@ -1834,8 +1834,8 @@ E = -0.48584030499187431 +/- 1.0411743995438257E-004
Discretizing the differential equation to generate the desired @@ -1896,7 +1896,7 @@ the simulation.
@@ -2052,17 +2052,17 @@ A = 0.78861366666666655 +/- 3.5096729498002445E-004
@@ -2221,8 +2221,8 @@ A = 0.78861366666666655 +/- 3.5096729498002445E-004
We will now consider the H2 molecule in a minimal basis composed of the @@ -2244,7 +2244,7 @@ the nuclei.