1
0
mirror of https://github.com/TREX-CoE/qmc-lttc.git synced 2024-12-21 11:53:58 +01:00

Corrected a couple of small things

This commit is contained in:
filippi-claudia 2021-01-30 23:29:19 +01:00 committed by GitHub
parent 1c5e6a9cb4
commit c55fba639c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

10
QMC.org
View File

@ -276,10 +276,10 @@ end function psi
applied to the wave function gives:
$$
\Delta \Psi (\mathbf{r}) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \Psi(\mathbf{r})
\Delta \Psi (\mathbf{r}) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \Psi(\mathbf{r})\,.
$$
So the local kinetic energy is
Therefore, the local kinetic energy is
$$
-\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right)
$$
@ -563,7 +563,7 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
If the space is discretized in small volume elements $\mathbf{r}_i$
of size $\delta \mathbf{r}$, the expression of $\langle E_L \rangle_{\Psi^2}$
becomes a weighted average of the local energy, where the weights
are the values of the probability density at $\mathbf{r}_i$
are the values of the wave function square at $\mathbf{r}_i$
multiplied by the volume element:
$$
@ -580,7 +580,7 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
*** Exercise
#+begin_exercise
Compute a numerical estimate of the energy in a grid of
Compute a numerical estimate of the energy using a grid of
$50\times50\times50$ points in the range $(-5,-5,-5) \le
\mathbf{r} \le (5,5,5)$.
#+end_exercise
@ -783,7 +783,7 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
*** Exercise
#+begin_exercise
Add the calculation of the variance to the previous code, and
compute a numerical estimate of the variance of the local energy in
compute a numerical estimate of the variance of the local energy using
a grid of $50\times50\times50$ points in the range $(-5,-5,-5) \le
\mathbf{r} \le (5,5,5)$ for different values of $a$.
#+end_exercise