mirror of
https://github.com/TREX-CoE/qmc-lttc.git
synced 2024-09-09 06:24:48 +02:00
Corrected a couple of small things
This commit is contained in:
parent
1c5e6a9cb4
commit
c55fba639c
10
QMC.org
10
QMC.org
@ -276,10 +276,10 @@ end function psi
|
||||
applied to the wave function gives:
|
||||
|
||||
$$
|
||||
\Delta \Psi (\mathbf{r}) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \Psi(\mathbf{r})
|
||||
\Delta \Psi (\mathbf{r}) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \Psi(\mathbf{r})\,.
|
||||
$$
|
||||
|
||||
So the local kinetic energy is
|
||||
Therefore, the local kinetic energy is
|
||||
$$
|
||||
-\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right)
|
||||
$$
|
||||
@ -563,7 +563,7 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
|
||||
If the space is discretized in small volume elements $\mathbf{r}_i$
|
||||
of size $\delta \mathbf{r}$, the expression of $\langle E_L \rangle_{\Psi^2}$
|
||||
becomes a weighted average of the local energy, where the weights
|
||||
are the values of the probability density at $\mathbf{r}_i$
|
||||
are the values of the wave function square at $\mathbf{r}_i$
|
||||
multiplied by the volume element:
|
||||
|
||||
$$
|
||||
@ -580,7 +580,7 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
|
||||
|
||||
*** Exercise
|
||||
#+begin_exercise
|
||||
Compute a numerical estimate of the energy in a grid of
|
||||
Compute a numerical estimate of the energy using a grid of
|
||||
$50\times50\times50$ points in the range $(-5,-5,-5) \le
|
||||
\mathbf{r} \le (5,5,5)$.
|
||||
#+end_exercise
|
||||
@ -783,7 +783,7 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
||||
*** Exercise
|
||||
#+begin_exercise
|
||||
Add the calculation of the variance to the previous code, and
|
||||
compute a numerical estimate of the variance of the local energy in
|
||||
compute a numerical estimate of the variance of the local energy using
|
||||
a grid of $50\times50\times50$ points in the range $(-5,-5,-5) \le
|
||||
\mathbf{r} \le (5,5,5)$ for different values of $a$.
|
||||
#+end_exercise
|
||||
|
Loading…
Reference in New Issue
Block a user