mirror of
https://github.com/TREX-CoE/qmc-lttc.git
synced 2024-12-21 11:53:58 +01:00
Working on VMC
This commit is contained in:
parent
277e243545
commit
b6d70add67
590
QMC.org
590
QMC.org
@ -90,9 +90,14 @@
|
|||||||
:header-args:python: :tangle hydrogen.py
|
:header-args:python: :tangle hydrogen.py
|
||||||
:header-args:f90: :tangle hydrogen.f90
|
:header-args:f90: :tangle hydrogen.f90
|
||||||
:END:
|
:END:
|
||||||
*** Write a function which computes the potential at $\mathbf{r}$
|
|
||||||
|
*** Exercise 1
|
||||||
|
|
||||||
|
#+begin_exercise
|
||||||
|
Write a function which computes the potential at $\mathbf{r}$.
|
||||||
The function accepts a 3-dimensional vector =r= as input arguments
|
The function accepts a 3-dimensional vector =r= as input arguments
|
||||||
and returns the potential.
|
and returns the potential.
|
||||||
|
#+end_exercise
|
||||||
|
|
||||||
$\mathbf{r}=\left( \begin{array}{c} x \\ y\\ z\end{array} \right)$, so
|
$\mathbf{r}=\left( \begin{array}{c} x \\ y\\ z\end{array} \right)$, so
|
||||||
$$
|
$$
|
||||||
@ -117,9 +122,12 @@ double precision function potential(r)
|
|||||||
end function potential
|
end function potential
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
*** Write a function which computes the wave function at $\mathbf{r}$
|
*** Exercise 2
|
||||||
|
#+begin_exercise
|
||||||
|
Write a function which computes the wave function at $\mathbf{r}$.
|
||||||
The function accepts a scalar =a= and a 3-dimensional vector =r= as
|
The function accepts a scalar =a= and a 3-dimensional vector =r= as
|
||||||
input arguments, and returns a scalar.
|
input arguments, and returns a scalar.
|
||||||
|
#+end_exercise
|
||||||
|
|
||||||
|
|
||||||
*Python*
|
*Python*
|
||||||
@ -137,9 +145,12 @@ double precision function psi(a, r)
|
|||||||
end function psi
|
end function psi
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
*** Write a function which computes the local kinetic energy at $\mathbf{r}$
|
*** Exercise 3
|
||||||
|
#+begin_exercise
|
||||||
|
Write a function which computes the local kinetic energy at $\mathbf{r}$.
|
||||||
The function accepts =a= and =r= as input arguments and returns the
|
The function accepts =a= and =r= as input arguments and returns the
|
||||||
local kinetic energy.
|
local kinetic energy.
|
||||||
|
#+end_exercise
|
||||||
|
|
||||||
The local kinetic energy is defined as $$-\frac{1}{2}\frac{\Delta \Psi}{\Psi}.$$
|
The local kinetic energy is defined as $$-\frac{1}{2}\frac{\Delta \Psi}{\Psi}.$$
|
||||||
|
|
||||||
@ -187,9 +198,12 @@ double precision function kinetic(a,r)
|
|||||||
end function kinetic
|
end function kinetic
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
*** Write a function which computes the local energy at $\mathbf{r}$
|
*** Exercise 4
|
||||||
|
#+begin_exercise
|
||||||
|
Write a function which computes the local energy at $\mathbf{r}$.
|
||||||
The function accepts =x,y,z= as input arguments and returns the
|
The function accepts =x,y,z= as input arguments and returns the
|
||||||
local energy.
|
local energy.
|
||||||
|
#+end_exercise
|
||||||
|
|
||||||
$$
|
$$
|
||||||
E_L(\mathbf{r}) = -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) + V(\mathbf{r})
|
E_L(\mathbf{r}) = -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) + V(\mathbf{r})
|
||||||
@ -218,11 +232,15 @@ end function e_loc
|
|||||||
:header-args:f90: :tangle plot_hydrogen.f90
|
:header-args:f90: :tangle plot_hydrogen.f90
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the
|
|
||||||
local energy along the $x$ axis.
|
*** Exercise
|
||||||
|
#+begin_exercise
|
||||||
|
For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the
|
||||||
|
local energy along the $x$ axis.
|
||||||
|
#+end_exercise
|
||||||
|
|
||||||
*Python*
|
*Python*
|
||||||
#+BEGIN_SRC python :results none
|
#+BEGIN_SRC python :results none
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
@ -244,16 +262,16 @@ plt.tight_layout()
|
|||||||
plt.legend()
|
plt.legend()
|
||||||
|
|
||||||
plt.savefig("plot_py.png")
|
plt.savefig("plot_py.png")
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
|
|
||||||
[[./plot_py.png]]
|
[[./plot_py.png]]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
*Fortran*
|
*Fortran*
|
||||||
#+begin_src f90
|
#+begin_src f90
|
||||||
program plot
|
program plot
|
||||||
implicit none
|
implicit none
|
||||||
double precision, external :: e_loc
|
double precision, external :: e_loc
|
||||||
@ -282,20 +300,20 @@ program plot
|
|||||||
end do
|
end do
|
||||||
|
|
||||||
end program plot
|
end program plot
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
To compile and run:
|
To compile and run:
|
||||||
|
|
||||||
#+begin_src sh :exports both
|
#+begin_src sh :exports both
|
||||||
gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
|
gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
|
||||||
./plot_hydrogen > data
|
./plot_hydrogen > data
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
|
|
||||||
To plot the data using gnuplot:
|
To plot the data using gnuplot:
|
||||||
|
|
||||||
#+begin_src gnuplot :file plot.png :exports both
|
#+begin_src gnuplot :file plot.png :exports both
|
||||||
set grid
|
set grid
|
||||||
set xrange [-5:5]
|
set xrange [-5:5]
|
||||||
set yrange [-2:1]
|
set yrange [-2:1]
|
||||||
@ -305,12 +323,12 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
|
|||||||
'./data' index 3 using 1:2 with lines title 'a=1.0', \
|
'./data' index 3 using 1:2 with lines title 'a=1.0', \
|
||||||
'./data' index 4 using 1:2 with lines title 'a=1.5', \
|
'./data' index 4 using 1:2 with lines title 'a=1.5', \
|
||||||
'./data' index 5 using 1:2 with lines title 'a=2.0'
|
'./data' index 5 using 1:2 with lines title 'a=2.0'
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
[[file:plot.png]]
|
[[file:plot.png]]
|
||||||
|
|
||||||
** Compute numerically the expectation value of the energy
|
** Numerical estimation of the energy
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:header-args:python: :tangle energy_hydrogen.py
|
:header-args:python: :tangle energy_hydrogen.py
|
||||||
:header-args:f90: :tangle energy_hydrogen.f90
|
:header-args:f90: :tangle energy_hydrogen.f90
|
||||||
@ -327,18 +345,22 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
|
|||||||
w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta \mathbf{r}
|
w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta \mathbf{r}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
In this section, we will compute a numerical estimate of the
|
|
||||||
energy in a grid of $50\times50\times50$ points in the range
|
|
||||||
$(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$.
|
|
||||||
|
|
||||||
#+begin_note
|
#+begin_note
|
||||||
The energy is biased because:
|
The energy is biased because:
|
||||||
- The volume elements are not infinitely small (discretization error)
|
- The volume elements are not infinitely small (discretization error)
|
||||||
- The energy is evaluated only inside the box (incompleteness of the space)
|
- The energy is evaluated only inside the box (incompleteness of the space)
|
||||||
#+end_note
|
#+end_note
|
||||||
|
|
||||||
*Python*
|
|
||||||
#+BEGIN_SRC python :results none
|
*** Exercise
|
||||||
|
#+begin_exercise
|
||||||
|
Compute a numerical estimate of the energy in a grid of
|
||||||
|
$50\times50\times50$ points in the range $(-5,-5,-5) \le
|
||||||
|
\mathbf{r} \le (5,5,5)$.
|
||||||
|
#+end_exercise
|
||||||
|
|
||||||
|
*Python*
|
||||||
|
#+BEGIN_SRC python :results none
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from hydrogen import e_loc, psi
|
from hydrogen import e_loc, psi
|
||||||
|
|
||||||
@ -363,19 +385,19 @@ for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
|||||||
E = E / norm
|
E = E / norm
|
||||||
print(f"a = {a} \t E = {E}")
|
print(f"a = {a} \t E = {E}")
|
||||||
|
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
: a = 0.1 E = -0.24518438948809218
|
: a = 0.1 E = -0.24518438948809218
|
||||||
: a = 0.2 E = -0.26966057967803525
|
: a = 0.2 E = -0.26966057967803525
|
||||||
: a = 0.5 E = -0.3856357612517407
|
: a = 0.5 E = -0.3856357612517407
|
||||||
: a = 0.9 E = -0.49435709786716214
|
: a = 0.9 E = -0.49435709786716214
|
||||||
: a = 1.0 E = -0.5
|
: a = 1.0 E = -0.5
|
||||||
: a = 1.5 E = -0.39242967082602226
|
: a = 1.5 E = -0.39242967082602226
|
||||||
: a = 2.0 E = -0.08086980667844901
|
: a = 2.0 E = -0.08086980667844901
|
||||||
|
|
||||||
*Fortran*
|
*Fortran*
|
||||||
#+begin_src f90
|
#+begin_src f90
|
||||||
program energy_hydrogen
|
program energy_hydrogen
|
||||||
implicit none
|
implicit none
|
||||||
double precision, external :: e_loc, psi
|
double precision, external :: e_loc, psi
|
||||||
@ -414,24 +436,24 @@ program energy_hydrogen
|
|||||||
end do
|
end do
|
||||||
|
|
||||||
end program energy_hydrogen
|
end program energy_hydrogen
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
To compile the Fortran and run it:
|
To compile the Fortran and run it:
|
||||||
|
|
||||||
#+begin_src sh :results output :exports both
|
#+begin_src sh :results output :exports both
|
||||||
gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
||||||
./energy_hydrogen
|
./energy_hydrogen
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
: a = 0.10000000000000001 E = -0.24518438948809140
|
: a = 0.10000000000000001 E = -0.24518438948809140
|
||||||
: a = 0.20000000000000001 E = -0.26966057967803236
|
: a = 0.20000000000000001 E = -0.26966057967803236
|
||||||
: a = 0.50000000000000000 E = -0.38563576125173815
|
: a = 0.50000000000000000 E = -0.38563576125173815
|
||||||
: a = 1.0000000000000000 E = -0.50000000000000000
|
: a = 1.0000000000000000 E = -0.50000000000000000
|
||||||
: a = 1.5000000000000000 E = -0.39242967082602065
|
: a = 1.5000000000000000 E = -0.39242967082602065
|
||||||
: a = 2.0000000000000000 E = -8.0869806678448772E-002
|
: a = 2.0000000000000000 E = -8.0869806678448772E-002
|
||||||
|
|
||||||
** Compute the variance of the local energy
|
** Variance of the local energy
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:header-args:python: :tangle variance_hydrogen.py
|
:header-args:python: :tangle variance_hydrogen.py
|
||||||
:header-args:f90: :tangle variance_hydrogen.f90
|
:header-args:f90: :tangle variance_hydrogen.f90
|
||||||
@ -450,8 +472,13 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
|||||||
$\hat{H}$) the variance is zero, so the variance of the local
|
$\hat{H}$) the variance is zero, so the variance of the local
|
||||||
energy can be used as a measure of the quality of a wave function.
|
energy can be used as a measure of the quality of a wave function.
|
||||||
|
|
||||||
|
*** Exercise
|
||||||
|
#+begin_exercise
|
||||||
Compute a numerical estimate of the variance of the local energy
|
Compute a numerical estimate of the variance of the local energy
|
||||||
in a grid of $50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$.
|
in a grid of $50\times50\times50$ points in the range
|
||||||
|
$(-5,-5,-5)
|
||||||
|
\le \mathbf{r} \le (5,5,5)$ for different values of $a$.
|
||||||
|
#+end_exercise
|
||||||
|
|
||||||
*Python*
|
*Python*
|
||||||
#+begin_src python :results none
|
#+begin_src python :results none
|
||||||
@ -617,8 +644,11 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
|
|||||||
E \pm \delta E, \text{ where } \delta E = \frac{\sigma}{\sqrt{M}}
|
E \pm \delta E, \text{ where } \delta E = \frac{\sigma}{\sqrt{M}}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
*** Exercise
|
||||||
|
#+begin_exercise
|
||||||
Write a function returning the average and statistical error of an
|
Write a function returning the average and statistical error of an
|
||||||
input array.
|
input array.
|
||||||
|
#+end_exercise
|
||||||
|
|
||||||
*Python*
|
*Python*
|
||||||
#+BEGIN_SRC python :results none
|
#+BEGIN_SRC python :results none
|
||||||
@ -656,26 +686,38 @@ end subroutine ave_error
|
|||||||
:header-args:f90: :tangle qmc_uniform.f90
|
:header-args:f90: :tangle qmc_uniform.f90
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
In this section we write a function to perform a Monte Carlo
|
We will now do our first Monte Carlo calculation to compute the
|
||||||
calculation of the average energy.
|
energy of the hydrogen atom.
|
||||||
|
|
||||||
At every Monte Carlo step:
|
At every Monte Carlo step:
|
||||||
|
|
||||||
- Draw 3 uniform random numbers in the interval $(-5,-5,-5) \le
|
- Draw a random point $\mathbf{r}_i$ in the box $(-5,-5,-5) \le
|
||||||
(x,y,z) \le (5,5,5)$
|
(x,y,z) \le (5,5,5)$
|
||||||
- Compute $\Psi^2 \times E_L$ at this point and accumulate the
|
- Compute $[\Psi(\mathbf{r}_i)]^2$ and accumulate the result in a
|
||||||
result in E
|
variable =normalization=
|
||||||
- Compute $\Psi^2$ at this point and accumulate the result in N
|
- Compute $[\Psi(\mathbf{r}_i)]^2 \times E_L(\mathbf{r}_i)$, and accumulate the
|
||||||
|
result in a variable =energy=
|
||||||
|
|
||||||
Once all the steps have been computed, return the average energy
|
One Monte Carlo run will consist of $N$ Monte Carlo steps. Once all the
|
||||||
computed on the Monte Carlo calculation.
|
steps have been computed, the run returns the average energy
|
||||||
|
$\bar{E}_k$ over the $N$ steps of the run.
|
||||||
|
|
||||||
In the main program, write a loop to perform 30 Monte Carlo runs,
|
To compute the statistical error, perform $M$ runs. The final
|
||||||
and compute the average energy and the associated statistical error.
|
estimate of the energy will be the average over the $\bar{E}_k$,
|
||||||
|
and the variance of the $\bar{E}_k$ will be used to compute the
|
||||||
|
statistical error.
|
||||||
|
|
||||||
|
*** Exercise
|
||||||
|
|
||||||
Compute the energy of the wave function with $a=0.9$.
|
#+begin_exercise
|
||||||
|
Parameterize the wave function with $a=0.9$. Perform 30
|
||||||
|
independent Monte Carlo runs, each with 100 000 Monte Carlo
|
||||||
|
steps. Store the final energies of each run and use this array to
|
||||||
|
compute the average energy and the associated error bar.
|
||||||
|
#+end_exercise
|
||||||
|
|
||||||
*Python*
|
*Python*
|
||||||
#+BEGIN_SRC python :results output
|
#+BEGIN_SRC python :results output
|
||||||
from hydrogen import *
|
from hydrogen import *
|
||||||
from qmc_stats import *
|
from qmc_stats import *
|
||||||
|
|
||||||
@ -695,13 +737,13 @@ nmax = 100000
|
|||||||
X = [MonteCarlo(a,nmax) for i in range(30)]
|
X = [MonteCarlo(a,nmax) for i in range(30)]
|
||||||
E, deltaE = ave_error(X)
|
E, deltaE = ave_error(X)
|
||||||
print(f"E = {E} +/- {deltaE}")
|
print(f"E = {E} +/- {deltaE}")
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
: E = -0.4956255109300764 +/- 0.0007082875482711226
|
: E = -0.4956255109300764 +/- 0.0007082875482711226
|
||||||
|
|
||||||
*Fortran*
|
*Fortran*
|
||||||
#+BEGIN_SRC f90
|
#+BEGIN_SRC f90
|
||||||
subroutine uniform_montecarlo(a,nmax,energy)
|
subroutine uniform_montecarlo(a,nmax,energy)
|
||||||
implicit none
|
implicit none
|
||||||
double precision, intent(in) :: a
|
double precision, intent(in) :: a
|
||||||
@ -743,15 +785,15 @@ program qmc
|
|||||||
call ave_error(X,nruns,ave,err)
|
call ave_error(X,nruns,ave,err)
|
||||||
print *, 'E = ', ave, '+/-', err
|
print *, 'E = ', ave, '+/-', err
|
||||||
end program qmc
|
end program qmc
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
#+begin_src sh :results output :exports both
|
#+begin_src sh :results output :exports both
|
||||||
gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
|
gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
|
||||||
./qmc_uniform
|
./qmc_uniform
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
: E = -0.49588321986667677 +/- 7.1758863546737969E-004
|
: E = -0.49588321986667677 +/- 7.1758863546737969E-004
|
||||||
|
|
||||||
** Gaussian sampling
|
** Gaussian sampling
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
@ -773,6 +815,9 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
|
|||||||
z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2)
|
z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2)
|
||||||
\end{eqnarray*}
|
\end{eqnarray*}
|
||||||
|
|
||||||
|
Here is a Fortran implementation returning a Gaussian-distributed
|
||||||
|
n-dimensional vector $\mathbf{z}$;
|
||||||
|
|
||||||
*Fortran*
|
*Fortran*
|
||||||
#+BEGIN_SRC f90 :tangle qmc_stats.f90
|
#+BEGIN_SRC f90 :tangle qmc_stats.f90
|
||||||
subroutine random_gauss(z,n)
|
subroutine random_gauss(z,n)
|
||||||
@ -805,14 +850,16 @@ end subroutine random_gauss
|
|||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
|
|
||||||
Now the equation for the energy is changed into
|
Now the sampling probability can be inserted into the equation of the energy:
|
||||||
|
|
||||||
\[
|
\[
|
||||||
E = \frac{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r})\right]^2}{P(\mathbf{r})}\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r}) \right]^2}{P(\mathbf{r})} d\mathbf{r}}
|
E = \frac{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r})\right]^2}{P(\mathbf{r})}\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r}) \right]^2}{P(\mathbf{r})} d\mathbf{r}}
|
||||||
\]
|
\]
|
||||||
with
|
|
||||||
|
with the Gaussian probability
|
||||||
|
|
||||||
\[
|
\[
|
||||||
P(\mathbf{r}) = \frac{1}{(2 \pi)^{3/2}}\exp\left( -\frac{\mathbf{r}^2}{2} \right)
|
P(\mathbf{r}) = \frac{1}{(2 \pi)^{3/2}}\exp\left( -\frac{\mathbf{r}^2}{2} \right).
|
||||||
\]
|
\]
|
||||||
|
|
||||||
As the coordinates are drawn with probability $P(\mathbf{r})$, the
|
As the coordinates are drawn with probability $P(\mathbf{r})$, the
|
||||||
@ -823,8 +870,17 @@ end subroutine random_gauss
|
|||||||
w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r}_i)} \delta \mathbf{r}
|
w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r}_i)} \delta \mathbf{r}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
*Python*
|
|
||||||
#+BEGIN_SRC python :results output
|
*** Exercise
|
||||||
|
|
||||||
|
#+begin_exercise
|
||||||
|
Modify the exercise of the previous section to sample with
|
||||||
|
Gaussian-distributed random numbers. Can you see an reduction in
|
||||||
|
the statistical error?
|
||||||
|
#+end_exercise
|
||||||
|
|
||||||
|
*Python*
|
||||||
|
#+BEGIN_SRC python :results output
|
||||||
from hydrogen import *
|
from hydrogen import *
|
||||||
from qmc_stats import *
|
from qmc_stats import *
|
||||||
|
|
||||||
@ -848,14 +904,14 @@ nmax = 100000
|
|||||||
X = [MonteCarlo(a,nmax) for i in range(30)]
|
X = [MonteCarlo(a,nmax) for i in range(30)]
|
||||||
E, deltaE = ave_error(X)
|
E, deltaE = ave_error(X)
|
||||||
print(f"E = {E} +/- {deltaE}")
|
print(f"E = {E} +/- {deltaE}")
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
: E = -0.49507506093129827 +/- 0.00014164037765553668
|
: E = -0.49507506093129827 +/- 0.00014164037765553668
|
||||||
|
|
||||||
|
|
||||||
*Fortran*
|
*Fortran*
|
||||||
#+BEGIN_SRC f90
|
#+BEGIN_SRC f90
|
||||||
double precision function gaussian(r)
|
double precision function gaussian(r)
|
||||||
implicit none
|
implicit none
|
||||||
double precision, intent(in) :: r(3)
|
double precision, intent(in) :: r(3)
|
||||||
@ -904,15 +960,15 @@ program qmc
|
|||||||
call ave_error(X,nruns,ave,err)
|
call ave_error(X,nruns,ave,err)
|
||||||
print *, 'E = ', ave, '+/-', err
|
print *, 'E = ', ave, '+/-', err
|
||||||
end program qmc
|
end program qmc
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
#+begin_src sh :results output :exports both
|
#+begin_src sh :results output :exports both
|
||||||
gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian
|
gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian
|
||||||
./qmc_gaussian
|
./qmc_gaussian
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
: E = -0.49606057056767766 +/- 1.3918807547836872E-004
|
: E = -0.49606057056767766 +/- 1.3918807547836872E-004
|
||||||
|
|
||||||
** Sampling with $\Psi^2$
|
** Sampling with $\Psi^2$
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
@ -933,88 +989,105 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian
|
|||||||
E \approx \frac{1}{M}\sum_{i=1}^M E_L(\mathbf{r}_i)
|
E \approx \frac{1}{M}\sum_{i=1}^M E_L(\mathbf{r}_i)
|
||||||
$$
|
$$
|
||||||
|
|
||||||
To generate the probability density $\Psi^2$, we consider a
|
|
||||||
diffusion process characterized by a time-dependent density
|
|
||||||
$[\Psi(\mathbf{r},t)]^2$, which obeys the Fokker-Planck equation:
|
|
||||||
|
|
||||||
\[
|
|
||||||
\frac{\partial \Psi^2}{\partial t} = \sum_i D
|
|
||||||
\frac{\partial}{\partial \mathbf{r}_i} \left(
|
|
||||||
\frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right)
|
|
||||||
[\Psi(\mathbf{r},t)]^2.
|
|
||||||
\]
|
|
||||||
|
|
||||||
$D$ is the diffusion constant and $F_i$ is the i-th component of a
|
*** Importance sampling
|
||||||
drift velocity caused by an external potential. For a stationary
|
|
||||||
density, \( \frac{\partial \Psi^2}{\partial t} = 0 \), so
|
|
||||||
|
|
||||||
\begin{eqnarray*}
|
To generate the probability density $\Psi^2$, we consider a
|
||||||
0 & = & \sum_i D
|
diffusion process characterized by a time-dependent density
|
||||||
\frac{\partial}{\partial \mathbf{r}_i} \left(
|
$[\Psi(\mathbf{r},t)]^2$, which obeys the Fokker-Planck equation:
|
||||||
\frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right)
|
|
||||||
[\Psi(\mathbf{r})]^2 \\
|
|
||||||
0 & = & \sum_i D
|
|
||||||
\frac{\partial}{\partial \mathbf{r}_i} \left(
|
|
||||||
\frac{\partial [\Psi(\mathbf{r})]^2}{\partial \mathbf{r}_i} -
|
|
||||||
F_i(\mathbf{r})\,[\Psi(\mathbf{r})]^2 \right) \\
|
|
||||||
0 & = &
|
|
||||||
\frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} -
|
|
||||||
\frac{\partial F_i }{\partial \mathbf{r}_i}[\Psi(\mathbf{r})]^2 -
|
|
||||||
\frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r})
|
|
||||||
\end{eqnarray*}
|
|
||||||
|
|
||||||
we search for a drift function which satisfies
|
\[
|
||||||
|
\frac{\partial \Psi^2}{\partial t} = \sum_i D
|
||||||
\[
|
\frac{\partial}{\partial \mathbf{r}_i} \left(
|
||||||
\frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} =
|
\frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right)
|
||||||
[\Psi(\mathbf{r})]^2 \frac{\partial F_i }{\partial \mathbf{r}_i} +
|
[\Psi(\mathbf{r},t)]^2.
|
||||||
\frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r})
|
\]
|
||||||
\]
|
|
||||||
|
|
||||||
to obtain a second derivative on the left, we need the drift to be
|
|
||||||
of the form
|
|
||||||
\[
|
|
||||||
F_i(\mathbf{r}) = g(\mathbf{r}) \frac{\partial \Psi^2}{\partial \mathbf{r}_i}
|
|
||||||
\]
|
|
||||||
|
|
||||||
\[
|
|
||||||
\frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} =
|
|
||||||
[\Psi(\mathbf{r})]^2 \frac{\partial
|
|
||||||
g(\mathbf{r})}{\partial \mathbf{r}_i}\frac{\partial \Psi^2}{\partial \mathbf{r}_i} +
|
|
||||||
[\Psi(\mathbf{r})]^2 g(\mathbf{r}) \frac{\partial^2
|
|
||||||
\Psi^2}{\partial \mathbf{r}_i^2} +
|
|
||||||
\frac{\partial \Psi^2}{\partial \mathbf{r}_i}
|
|
||||||
g(\mathbf{r}) \frac{\partial \Psi^2}{\partial \mathbf{r}_i}
|
|
||||||
\]
|
|
||||||
|
|
||||||
$g = 1 / \Psi^2$ satisfies this equation, so
|
$D$ is the diffusion constant and $F_i$ is the i-th component of a
|
||||||
|
drift velocity caused by an external potential. For a stationary
|
||||||
|
density, \( \frac{\partial \Psi^2}{\partial t} = 0 \), so
|
||||||
|
|
||||||
\[
|
\begin{eqnarray*}
|
||||||
F(\mathbf{r}) = \frac{\nabla [\Psi(\mathbf{r})]^2}{[\Psi(\mathbf{r})]^2} = 2 \frac{\nabla
|
0 & = & \sum_i D
|
||||||
\Psi(\mathbf{r})}{\Psi(\mathbf{r})} = 2 \nabla \left( \log \Psi(\mathbf{r}) \right)
|
\frac{\partial}{\partial \mathbf{r}_i} \left(
|
||||||
\]
|
\frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right)
|
||||||
|
[\Psi(\mathbf{r})]^2 \\
|
||||||
|
0 & = & \sum_i D
|
||||||
|
\frac{\partial}{\partial \mathbf{r}_i} \left(
|
||||||
|
\frac{\partial [\Psi(\mathbf{r})]^2}{\partial \mathbf{r}_i} -
|
||||||
|
F_i(\mathbf{r})\,[\Psi(\mathbf{r})]^2 \right) \\
|
||||||
|
0 & = &
|
||||||
|
\frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} -
|
||||||
|
\frac{\partial F_i }{\partial \mathbf{r}_i}[\Psi(\mathbf{r})]^2 -
|
||||||
|
\frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r})
|
||||||
|
\end{eqnarray*}
|
||||||
|
|
||||||
following drifted diffusion scheme:
|
we search for a drift function which satisfies
|
||||||
|
|
||||||
\[
|
\[
|
||||||
\mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau \frac{\nabla
|
\frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} =
|
||||||
\Psi(\mathbf{r})}{\Psi(\mathbf{r})} + \eta \sqrt{\tau}
|
[\Psi(\mathbf{r})]^2 \frac{\partial F_i }{\partial \mathbf{r}_i} +
|
||||||
\]
|
\frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r})
|
||||||
|
\]
|
||||||
|
|
||||||
where $\eta$ is a normally-distributed Gaussian random number.
|
to obtain a second derivative on the left, we need the drift to be
|
||||||
|
of the form
|
||||||
|
\[
|
||||||
|
F_i(\mathbf{r}) = g(\mathbf{r}) \frac{\partial \Psi^2}{\partial \mathbf{r}_i}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\[
|
||||||
|
\frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} =
|
||||||
|
[\Psi(\mathbf{r})]^2 \frac{\partial
|
||||||
|
g(\mathbf{r})}{\partial \mathbf{r}_i}\frac{\partial \Psi^2}{\partial \mathbf{r}_i} +
|
||||||
|
[\Psi(\mathbf{r})]^2 g(\mathbf{r}) \frac{\partial^2
|
||||||
|
\Psi^2}{\partial \mathbf{r}_i^2} +
|
||||||
|
\frac{\partial \Psi^2}{\partial \mathbf{r}_i}
|
||||||
|
g(\mathbf{r}) \frac{\partial \Psi^2}{\partial \mathbf{r}_i}
|
||||||
|
\]
|
||||||
|
|
||||||
|
$g = 1 / \Psi^2$ satisfies this equation, so
|
||||||
|
|
||||||
First, write a function to compute the drift vector $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$.
|
\[
|
||||||
|
F(\mathbf{r}) = \frac{\nabla [\Psi(\mathbf{r})]^2}{[\Psi(\mathbf{r})]^2} = 2 \frac{\nabla
|
||||||
|
\Psi(\mathbf{r})}{\Psi(\mathbf{r})} = 2 \nabla \left( \log \Psi(\mathbf{r}) \right)
|
||||||
|
\]
|
||||||
|
|
||||||
|
In statistical mechanics, Fokker-Planck trajectories are generated
|
||||||
|
by a Langevin equation:
|
||||||
|
|
||||||
|
\[
|
||||||
|
\frac{\partial \mathbf{r}(t)}{\partial t} = 2D \frac{\nabla
|
||||||
|
\Psi(\mathbf{r}(t))}{\Psi} + \eta
|
||||||
|
\]
|
||||||
|
|
||||||
|
where $\eta$ is a normally-distributed fluctuating random force.
|
||||||
|
|
||||||
|
Discretizing this differential equation gives the following drifted
|
||||||
|
diffusion scheme:
|
||||||
|
|
||||||
|
\[
|
||||||
|
\mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau\, 2D \frac{\nabla
|
||||||
|
\Psi(\mathbf{r})}{\Psi(\mathbf{r})} + \chi
|
||||||
|
\]
|
||||||
|
where $\chi$ is a Gaussian random variable with zero mean and
|
||||||
|
variance $\tau\,2D$.
|
||||||
|
|
||||||
*Python*
|
**** Exercise 1
|
||||||
#+BEGIN_SRC python
|
|
||||||
|
#+begin_exercise
|
||||||
|
Write a function to compute the drift vector $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$.
|
||||||
|
#+end_exercise
|
||||||
|
|
||||||
|
*Python*
|
||||||
|
#+BEGIN_SRC python :tangle hydrogen.py
|
||||||
def drift(a,r):
|
def drift(a,r):
|
||||||
ar_inv = -a/np.sqrt(np.dot(r,r))
|
ar_inv = -a/np.sqrt(np.dot(r,r))
|
||||||
return r * ar_inv
|
return r * ar_inv
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
*Fortran*
|
*Fortran*
|
||||||
#+BEGIN_SRC f90
|
#+BEGIN_SRC f90 :tangle hydrogen.f90
|
||||||
subroutine drift(a,r,b)
|
subroutine drift(a,r,b)
|
||||||
implicit none
|
implicit none
|
||||||
double precision, intent(in) :: a, r(3)
|
double precision, intent(in) :: a, r(3)
|
||||||
@ -1023,54 +1096,50 @@ subroutine drift(a,r,b)
|
|||||||
ar_inv = -a / dsqrt(r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
|
ar_inv = -a / dsqrt(r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
|
||||||
b(:) = r(:) * ar_inv
|
b(:) = r(:) * ar_inv
|
||||||
end subroutine drift
|
end subroutine drift
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
|
**** TODO Exercise 2
|
||||||
|
|
||||||
Now we can write the Monte Carlo sampling:
|
#+begin_exercise
|
||||||
|
Sample $\Psi^2$ approximately using the drifted diffusion scheme,
|
||||||
|
with a diffusion constant $D=1/2$. You can use a time step of
|
||||||
|
0.001 a.u.
|
||||||
|
#+end_exercise
|
||||||
|
|
||||||
*Python*
|
*Python*
|
||||||
#+BEGIN_SRC python
|
#+BEGIN_SRC python :results output :tangle vmc.py
|
||||||
|
from hydrogen import *
|
||||||
|
from qmc_stats import *
|
||||||
def MonteCarlo(a,tau,nmax):
|
def MonteCarlo(a,tau,nmax):
|
||||||
E = 0.
|
E = 0.
|
||||||
N = 0.
|
N = 0.
|
||||||
sq_tau = sqrt(tau)
|
sq_tau = np.sqrt(tau)
|
||||||
r_old = np.random.normal(loc=0., scale=1.0, size=(3))
|
r_old = np.random.normal(loc=0., scale=1.0, size=(3))
|
||||||
d_old = drift(a,r_old)
|
d_old = drift(a,r_old)
|
||||||
d2_old = np.dot(d_old,d_old)
|
d2_old = np.dot(d_old,d_old)
|
||||||
psi_old = psi(a,r_old)
|
psi_old = psi(a,r_old)
|
||||||
for istep in range(nmax):
|
for istep in range(nmax):
|
||||||
eta = np.random.normal(loc=0., scale=1.0, size=(3))
|
chi = np.random.normal(loc=0., scale=1.0, size=(3))
|
||||||
r_new = r_old + tau * d_old + sq_tau * eta
|
r_new = r_old + tau * d_old + sq_tau * chi
|
||||||
d_new = drift(a,r_new)
|
N += 1.
|
||||||
d2_new = np.dot(d_new,d_new)
|
E += e_loc(a,r_new)
|
||||||
psi_new = psi(a,r_new)
|
r_old = r_new
|
||||||
# Metropolis
|
|
||||||
prod = np.dot((d_new + d_old), (r_new - r_old))
|
|
||||||
argexpo = 0.5 * (d2_new - d2_old)*tau + prod
|
|
||||||
q = psi_new / psi_old
|
|
||||||
q = np.exp(-argexpo) * q*q
|
|
||||||
if np.random.uniform() < q:
|
|
||||||
r_old = r_new
|
|
||||||
d_old = d_new
|
|
||||||
d2_old = d2_new
|
|
||||||
psi_old = psi_new
|
|
||||||
N += 1.
|
|
||||||
E += e_loc(a,r_old)
|
|
||||||
return E/N
|
return E/N
|
||||||
|
|
||||||
|
|
||||||
|
a = 0.9
|
||||||
nmax = 100000
|
nmax = 100000
|
||||||
tau = 0.1
|
tau = 0.001
|
||||||
X = [MonteCarlo(a,tau,nmax) for i in range(30)]
|
X = [MonteCarlo(a,tau,nmax) for i in range(30)]
|
||||||
E, deltaE = ave_error(X)
|
E, deltaE = ave_error(X)
|
||||||
print(f"E = {E} +/- {deltaE}")
|
print(f"E = {E} +/- {deltaE}")
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
: E = -0.4951783346213532 +/- 0.00022067316984271938
|
: E = -0.4112049153828464 +/- 0.00027934927432953063
|
||||||
|
|
||||||
*Fortran*
|
*Fortran*
|
||||||
#+BEGIN_SRC f90
|
#+BEGIN_SRC f90
|
||||||
subroutine variational_montecarlo(a,nmax,energy)
|
subroutine variational_montecarlo(a,nmax,energy)
|
||||||
implicit none
|
implicit none
|
||||||
double precision, intent(in) :: a
|
double precision, intent(in) :: a
|
||||||
@ -1111,15 +1180,153 @@ program qmc
|
|||||||
call ave_error(X,nruns,ave,err)
|
call ave_error(X,nruns,ave,err)
|
||||||
print *, 'E = ', ave, '+/-', err
|
print *, 'E = ', ave, '+/-', err
|
||||||
end program qmc
|
end program qmc
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
#+begin_src sh :results output :exports both
|
#+begin_src sh :results output :exports both
|
||||||
gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc
|
gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc
|
||||||
./vmc
|
./vmc
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
|
*** Metropolis algorithm
|
||||||
|
|
||||||
|
Discretizing the differential equation to generate the desired
|
||||||
|
probability density will suffer from a discretization error
|
||||||
|
leading to biases in the averages. The [[https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm][Metropolis-Hastings
|
||||||
|
sampling algorithm]] removes exactly the discretization errors, so
|
||||||
|
large time steps can be employed.
|
||||||
|
|
||||||
|
After the new position $\mathbf{r}_{n+1}$ has been computed, an
|
||||||
|
additional accept/reject step is performed. The acceptance
|
||||||
|
probability $A$ is chosen so that it is consistent with the
|
||||||
|
probability of leaving $\mathbf{r}_n$ and the probability of
|
||||||
|
entering $\mathbf{r}_{n+1}$:
|
||||||
|
|
||||||
|
\[ A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = \min \left( 1,
|
||||||
|
\frac{g(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})}
|
||||||
|
{g(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})}
|
||||||
|
\right)
|
||||||
|
\]
|
||||||
|
|
||||||
|
In our Hydrogen atom example, $P$ is $\Psi^2$ and $g$ is a
|
||||||
|
solution of the discretized Fokker-Planck equation:
|
||||||
|
|
||||||
|
\begin{eqnarray*}
|
||||||
|
P(r_{n}) &=& \Psi^2(\mathbf{r}_n) \\
|
||||||
|
g(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) & = &
|
||||||
|
\frac{1}{(4\pi\,D\,\tau)^{3/2}} \exp \left[ - \frac{\left(
|
||||||
|
\mathbf{r}_{n+1} - \mathbf{r}_{n} - 2D \frac{\nabla
|
||||||
|
\Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{4D\,\tau} \right]
|
||||||
|
\end{eqnarray*}
|
||||||
|
|
||||||
|
The accept/reject step is the following:
|
||||||
|
- Compute $A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})$.
|
||||||
|
- Draw a uniform random number $u$
|
||||||
|
- if $u \le A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})$, accept
|
||||||
|
the move
|
||||||
|
- if $u>A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})$, reject
|
||||||
|
the move: set $\mathbf{r}_{n+1} = \mathbf{r}_{n}$, but *don't
|
||||||
|
remove the sample from the average!*
|
||||||
|
|
||||||
|
|
||||||
|
**** TODO Exercise
|
||||||
|
|
||||||
|
#+begin_exercise
|
||||||
|
Modify the previous program to introduce the accept/reject step.
|
||||||
|
You should recover the unbiased result.
|
||||||
|
#+end_exercise
|
||||||
|
|
||||||
|
*Python*
|
||||||
|
#+BEGIN_SRC python
|
||||||
|
def MonteCarlo(a,tau,nmax):
|
||||||
|
E = 0.
|
||||||
|
N = 0.
|
||||||
|
sq_tau = np.sqrt(tau)
|
||||||
|
r_old = np.random.normal(loc=0., scale=1.0, size=(3))
|
||||||
|
d_old = drift(a,r_old)
|
||||||
|
d2_old = np.dot(d_old,d_old)
|
||||||
|
psi_old = psi(a,r_old)
|
||||||
|
for istep in range(nmax):
|
||||||
|
eta = np.random.normal(loc=0., scale=1.0, size=(3))
|
||||||
|
r_new = r_old + tau * d_old + sq_tau * eta
|
||||||
|
d_new = drift(a,r_new)
|
||||||
|
d2_new = np.dot(d_new,d_new)
|
||||||
|
psi_new = psi(a,r_new)
|
||||||
|
# Metropolis
|
||||||
|
prod = np.dot((d_new + d_old), (r_new - r_old))
|
||||||
|
argexpo = 0.5 * (d2_new - d2_old)*tau + prod
|
||||||
|
q = psi_new / psi_old
|
||||||
|
q = np.exp(-argexpo) * q*q
|
||||||
|
if np.random.uniform() < q:
|
||||||
|
r_old = r_new
|
||||||
|
d_old = d_new
|
||||||
|
d2_old = d2_new
|
||||||
|
psi_old = psi_new
|
||||||
|
N += 1.
|
||||||
|
E += e_loc(a,r_old)
|
||||||
|
return E/N
|
||||||
|
|
||||||
|
|
||||||
|
nmax = 100000
|
||||||
|
tau = 0.1
|
||||||
|
X = [MonteCarlo(a,tau,nmax) for i in range(30)]
|
||||||
|
E, deltaE = ave_error(X)
|
||||||
|
print(f"E = {E} +/- {deltaE}")
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+RESULTS:
|
||||||
|
: E = -0.4951783346213532 +/- 0.00022067316984271938
|
||||||
|
|
||||||
|
*Fortran*
|
||||||
|
#+BEGIN_SRC f90
|
||||||
|
subroutine variational_montecarlo(a,nmax,energy)
|
||||||
|
implicit none
|
||||||
|
double precision, intent(in) :: a
|
||||||
|
integer , intent(in) :: nmax
|
||||||
|
double precision, intent(out) :: energy
|
||||||
|
|
||||||
|
integer*8 :: istep
|
||||||
|
|
||||||
|
double precision :: norm, r(3), w
|
||||||
|
|
||||||
|
double precision, external :: e_loc, psi, gaussian
|
||||||
|
|
||||||
|
energy = 0.d0
|
||||||
|
norm = 0.d0
|
||||||
|
do istep = 1,nmax
|
||||||
|
call random_gauss(r,3)
|
||||||
|
w = psi(a,r)
|
||||||
|
w = w*w / gaussian(r)
|
||||||
|
norm = norm + w
|
||||||
|
energy = energy + w * e_loc(a,r)
|
||||||
|
end do
|
||||||
|
energy = energy / norm
|
||||||
|
end subroutine variational_montecarlo
|
||||||
|
|
||||||
|
program qmc
|
||||||
|
implicit none
|
||||||
|
double precision, parameter :: a = 0.9
|
||||||
|
integer , parameter :: nmax = 100000
|
||||||
|
integer , parameter :: nruns = 30
|
||||||
|
|
||||||
|
integer :: irun
|
||||||
|
double precision :: X(nruns)
|
||||||
|
double precision :: ave, err
|
||||||
|
|
||||||
|
do irun=1,nruns
|
||||||
|
call gaussian_montecarlo(a,nmax,X(irun))
|
||||||
|
enddo
|
||||||
|
call ave_error(X,nruns,ave,err)
|
||||||
|
print *, 'E = ', ave, '+/-', err
|
||||||
|
end program qmc
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+begin_src sh :results output :exports both
|
||||||
|
gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc
|
||||||
|
./vmc
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
|
||||||
* Diffusion Monte Carlo
|
* TODO Diffusion Monte Carlo
|
||||||
|
|
||||||
We will now consider the H_2 molecule in a minimal basis composed of the
|
We will now consider the H_2 molecule in a minimal basis composed of the
|
||||||
$1s$ orbitals of the hydrogen atoms:
|
$1s$ orbitals of the hydrogen atoms:
|
||||||
@ -1133,3 +1340,4 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc
|
|||||||
the nuclei.
|
the nuclei.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -26,7 +26,6 @@ program energy_hydrogen
|
|||||||
r(3) = x(l)
|
r(3) = x(l)
|
||||||
w = psi(a(j),r)
|
w = psi(a(j),r)
|
||||||
w = w * w * delta
|
w = w * w * delta
|
||||||
|
|
||||||
energy = energy + w * e_loc(a(j), r)
|
energy = energy + w * e_loc(a(j), r)
|
||||||
norm = norm + w
|
norm = norm + w
|
||||||
end do
|
end do
|
||||||
|
@ -1,23 +1,23 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from hydrogen import e_loc, psi
|
from hydrogen import e_loc, psi
|
||||||
|
|
||||||
interval = np.linspace(-5,5,num=50)
|
interval = np.linspace(-5,5,num=50)
|
||||||
delta = (interval[1]-interval[0])**3
|
delta = (interval[1]-interval[0])**3
|
||||||
|
|
||||||
r = np.array([0.,0.,0.])
|
r = np.array([0.,0.,0.])
|
||||||
|
|
||||||
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
||||||
E = 0.
|
E = 0.
|
||||||
norm = 0.
|
norm = 0.
|
||||||
for x in interval:
|
for x in interval:
|
||||||
r[0] = x
|
r[0] = x
|
||||||
for y in interval:
|
for y in interval:
|
||||||
r[1] = y
|
r[1] = y
|
||||||
for z in interval:
|
for z in interval:
|
||||||
r[2] = z
|
r[2] = z
|
||||||
w = psi(a,r)
|
w = psi(a,r)
|
||||||
w = w * w * delta
|
w = w * w * delta
|
||||||
E += w * e_loc(a,r)
|
E += w * e_loc(a,r)
|
||||||
norm += w
|
norm += w
|
||||||
E = E / norm
|
E = E / norm
|
||||||
print(f"a = {a} \t E = {E}")
|
print(f"a = {a} \t E = {E}")
|
||||||
|
@ -23,3 +23,12 @@ double precision function e_loc(a,r)
|
|||||||
double precision, external :: kinetic, potential
|
double precision, external :: kinetic, potential
|
||||||
e_loc = kinetic(a,r) + potential(r)
|
e_loc = kinetic(a,r) + potential(r)
|
||||||
end function e_loc
|
end function e_loc
|
||||||
|
|
||||||
|
subroutine drift(a,r,b)
|
||||||
|
implicit none
|
||||||
|
double precision, intent(in) :: a, r(3)
|
||||||
|
double precision, intent(out) :: b(3)
|
||||||
|
double precision :: ar_inv
|
||||||
|
ar_inv = -a / dsqrt(r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
|
||||||
|
b(:) = r(:) * ar_inv
|
||||||
|
end subroutine drift
|
||||||
|
@ -11,3 +11,7 @@ def kinetic(a,r):
|
|||||||
|
|
||||||
def e_loc(a,r):
|
def e_loc(a,r):
|
||||||
return kinetic(a,r) + potential(r)
|
return kinetic(a,r) + potential(r)
|
||||||
|
|
||||||
|
def drift(a,r):
|
||||||
|
ar_inv = -a/np.sqrt(np.dot(r,r))
|
||||||
|
return r * ar_inv
|
||||||
|
@ -1,19 +1,19 @@
|
|||||||
from hydrogen import *
|
from hydrogen import *
|
||||||
from qmc_stats import *
|
from qmc_stats import *
|
||||||
|
|
||||||
def MonteCarlo(a, nmax):
|
def MonteCarlo(a, nmax):
|
||||||
E = 0.
|
E = 0.
|
||||||
N = 0.
|
N = 0.
|
||||||
for istep in range(nmax):
|
for istep in range(nmax):
|
||||||
r = np.random.uniform(-5., 5., (3))
|
r = np.random.uniform(-5., 5., (3))
|
||||||
w = psi(a,r)
|
w = psi(a,r)
|
||||||
w = w*w
|
w = w*w
|
||||||
N += w
|
N += w
|
||||||
E += w * e_loc(a,r)
|
E += w * e_loc(a,r)
|
||||||
return E/N
|
return E/N
|
||||||
|
|
||||||
a = 0.9
|
a = 0.9
|
||||||
nmax = 100000
|
nmax = 100000
|
||||||
X = [MonteCarlo(a,nmax) for i in range(30)]
|
X = [MonteCarlo(a,nmax) for i in range(30)]
|
||||||
E, deltaE = ave_error(X)
|
E, deltaE = ave_error(X)
|
||||||
print(f"E = {E} +/- {deltaE}")
|
print(f"E = {E} +/- {deltaE}")
|
||||||
|
@ -26,7 +26,6 @@ program variance_hydrogen
|
|||||||
r(3) = x(l)
|
r(3) = x(l)
|
||||||
w = psi(a(j),r)
|
w = psi(a(j),r)
|
||||||
w = w * w * delta
|
w = w * w * delta
|
||||||
|
|
||||||
energy = energy + w * e_loc(a(j), r)
|
energy = energy + w * e_loc(a(j), r)
|
||||||
norm = norm + w
|
norm = norm + w
|
||||||
end do
|
end do
|
||||||
@ -44,7 +43,6 @@ program variance_hydrogen
|
|||||||
r(3) = x(l)
|
r(3) = x(l)
|
||||||
w = psi(a(j),r)
|
w = psi(a(j),r)
|
||||||
w = w * w * delta
|
w = w * w * delta
|
||||||
|
|
||||||
s2 = s2 + w * ( e_loc(a(j), r) - energy )**2
|
s2 = s2 + w * ( e_loc(a(j), r) - energy )**2
|
||||||
norm = norm + w
|
norm = norm + w
|
||||||
end do
|
end do
|
||||||
|
@ -20,8 +20,8 @@ for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
|||||||
El = e_loc(a, r)
|
El = e_loc(a, r)
|
||||||
E += w * El
|
E += w * El
|
||||||
norm += w
|
norm += w
|
||||||
E = E / norm
|
E = E / norm
|
||||||
s2 = 0.
|
s2 = 0.
|
||||||
for x in interval:
|
for x in interval:
|
||||||
r[0] = x
|
r[0] = x
|
||||||
for y in interval:
|
for y in interval:
|
||||||
@ -32,5 +32,5 @@ for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
|||||||
w = w * w * delta
|
w = w * w * delta
|
||||||
El = e_loc(a, r)
|
El = e_loc(a, r)
|
||||||
s2 += w * (El - E)**2
|
s2 += w * (El - E)**2
|
||||||
s2 = s2 / norm
|
s2 = s2 / norm
|
||||||
print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}")
|
print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}")
|
||||||
|
4
worg.css
4
worg.css
@ -306,6 +306,10 @@
|
|||||||
/* font-lock-warning-face */
|
/* font-lock-warning-face */
|
||||||
background-color: #e3e3f7;
|
background-color: #e3e3f7;
|
||||||
}
|
}
|
||||||
|
.exercise {
|
||||||
|
/* font-lock-warning-face */
|
||||||
|
background-color: #e3f7e3;
|
||||||
|
}
|
||||||
.note {
|
.note {
|
||||||
/* font-lock-warning-face */
|
/* font-lock-warning-face */
|
||||||
background-color: #f7f7d9;
|
background-color: #f7f7d9;
|
||||||
|
Loading…
Reference in New Issue
Block a user