mirror of
https://github.com/TREX-CoE/qmc-lttc.git
synced 2024-12-22 04:15:01 +01:00
Solutions
This commit is contained in:
parent
4583a51266
commit
a2373b198b
217
QMC.org
217
QMC.org
@ -6,9 +6,10 @@
|
|||||||
#+LATEX_CLASS: report
|
#+LATEX_CLASS: report
|
||||||
#+LATEX_HEADER_EXTRA: \usepackage{minted}
|
#+LATEX_HEADER_EXTRA: \usepackage{minted}
|
||||||
#+HTML_HEAD: <link rel="stylesheet" title="Standard" href="worg.css" type="text/css" />
|
#+HTML_HEAD: <link rel="stylesheet" title="Standard" href="worg.css" type="text/css" />
|
||||||
#+OPTIONS: H:2 num:t toc:nil \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t
|
#+OPTIONS: H:4 num:t toc:t \n:nil @:t ::t |:t ^:t -:t f:t *:t <:t
|
||||||
#+OPTIONS: TeX:t LaTeX:t skip:nil d:nil todo:t pri:nil tags:not-in-toc
|
#+OPTIONS: TeX:t LaTeX:t skip:nil d:nil todo:t pri:nil tags:not-in-toc
|
||||||
#+EXPORT_EXCLUDE_TAGS: solution
|
# EXCLUDE_TAGS: Python solution
|
||||||
|
# EXCLUDE_TAGS: Fortran solution
|
||||||
|
|
||||||
#+BEGIN_SRC elisp :output none :exports none
|
#+BEGIN_SRC elisp :output none :exports none
|
||||||
(setq org-latex-listings 'minted
|
(setq org-latex-listings 'minted
|
||||||
@ -54,7 +55,7 @@
|
|||||||
*Note*
|
*Note*
|
||||||
#+begin_important
|
#+begin_important
|
||||||
In Fortran, when you use a double precision constant, don't forget
|
In Fortran, when you use a double precision constant, don't forget
|
||||||
to put d0 as a suffix (for example 2.0d0), or it will be
|
to put ~d0~ as a suffix (for example ~2.0d0~), or it will be
|
||||||
interpreted as a single precision value
|
interpreted as a single precision value
|
||||||
#+end_important
|
#+end_important
|
||||||
|
|
||||||
@ -68,32 +69,31 @@
|
|||||||
\Psi(\mathbf{r}) = \exp(-a |\mathbf{r}|)
|
\Psi(\mathbf{r}) = \exp(-a |\mathbf{r}|)
|
||||||
$$
|
$$
|
||||||
|
|
||||||
We will first verify that $\Psi$ is an eigenfunction of the Hamiltonian
|
We will first verify that, for a given value of $a$, $\Psi$ is an
|
||||||
|
eigenfunction of the Hamiltonian
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\hat{H} = \hat{T} + \hat{V} = - \frac{1}{2} \Delta - \frac{1}{|\mathbf{r}|}
|
\hat{H} = \hat{T} + \hat{V} = - \frac{1}{2} \Delta - \frac{1}{|\mathbf{r}|}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
when $a=1$, by checking that $\hat{H}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$ for
|
To do that, we will check if the local energy, defined as
|
||||||
all $\mathbf{r}$. We will check that the local energy, defined as
|
|
||||||
|
|
||||||
$$
|
$$
|
||||||
E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})},
|
E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})},
|
||||||
$$
|
$$
|
||||||
|
|
||||||
is constant. We will also see that when $a \ne 1$ the local energy
|
is constant.
|
||||||
is not constant, so $\hat{H} \Psi \ne E \Psi$.
|
|
||||||
|
|
||||||
|
|
||||||
The probabilistic /expected value/ of an arbitrary function $f(x)$
|
The probabilistic /expected value/ of an arbitrary function $f(x)$
|
||||||
with respect to a probability density function $p(x)$ is given by
|
with respect to a probability density function $p(x)$ is given by
|
||||||
|
|
||||||
$$ \langle f \rangle_p = \int_{-\infty}^\infty p(x)\, f(x)\,dx $$.
|
$$ \langle f \rangle_p = \int_{-\infty}^\infty p(x)\, f(x)\,dx. $$
|
||||||
|
|
||||||
Recall that a probability density function $p(x)$ is non-negative
|
Recall that a probability density function $p(x)$ is non-negative
|
||||||
and integrates to one:
|
and integrates to one:
|
||||||
|
|
||||||
$$ \int_{-\infty}^\infty p(x)\,dx = 1 $$.
|
$$ \int_{-\infty}^\infty p(x)\,dx = 1. $$
|
||||||
|
|
||||||
|
|
||||||
The electronic energy of a system is the expectation value of the
|
The electronic energy of a system is the expectation value of the
|
||||||
@ -114,8 +114,18 @@
|
|||||||
:header-args:f90: :tangle hydrogen.f90
|
:header-args:f90: :tangle hydrogen.f90
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
|
Write all the functions of this section in a single file :
|
||||||
|
~hydrogen.py~ if you use Python, or ~hydrogen.f90~ is you use
|
||||||
|
Fortran.
|
||||||
|
|
||||||
*** Exercise 1
|
*** Exercise 1
|
||||||
|
|
||||||
|
#+begin_exercise
|
||||||
|
Find the theoretical value of $a$ for which $\Psi$ is an eigenfunction of $\hat{H}$.
|
||||||
|
#+end_exercise
|
||||||
|
|
||||||
|
*** Exercise 2
|
||||||
|
|
||||||
#+begin_exercise
|
#+begin_exercise
|
||||||
Write a function which computes the potential at $\mathbf{r}$.
|
Write a function which computes the potential at $\mathbf{r}$.
|
||||||
The function accepts a 3-dimensional vector =r= as input arguments
|
The function accepts a 3-dimensional vector =r= as input arguments
|
||||||
@ -127,7 +137,15 @@
|
|||||||
V(\mathbf{r}) = -\frac{1}{\sqrt{x^2 + y^2 + z^2}}
|
V(\mathbf{r}) = -\frac{1}{\sqrt{x^2 + y^2 + z^2}}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
*Python*
|
**** Python
|
||||||
|
#+BEGIN_SRC python :results none :tangle none
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
def potential(r):
|
||||||
|
# TODO
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
**** Python :solution:
|
||||||
#+BEGIN_SRC python :results none
|
#+BEGIN_SRC python :results none
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
@ -135,8 +153,16 @@ def potential(r):
|
|||||||
return -1. / np.sqrt(np.dot(r,r))
|
return -1. / np.sqrt(np.dot(r,r))
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
|
**** Fortran
|
||||||
|
#+BEGIN_SRC f90 :tangle none
|
||||||
|
double precision function potential(r)
|
||||||
|
implicit none
|
||||||
|
double precision, intent(in) :: r(3)
|
||||||
|
! TODO
|
||||||
|
end function potential
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
*Fortran*
|
**** Fortran :solution:
|
||||||
#+BEGIN_SRC f90
|
#+BEGIN_SRC f90
|
||||||
double precision function potential(r)
|
double precision function potential(r)
|
||||||
implicit none
|
implicit none
|
||||||
@ -145,7 +171,7 @@ double precision function potential(r)
|
|||||||
end function potential
|
end function potential
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
*** Exercise 2
|
*** Exercise 3
|
||||||
#+begin_exercise
|
#+begin_exercise
|
||||||
Write a function which computes the wave function at $\mathbf{r}$.
|
Write a function which computes the wave function at $\mathbf{r}$.
|
||||||
The function accepts a scalar =a= and a 3-dimensional vector =r= as
|
The function accepts a scalar =a= and a 3-dimensional vector =r= as
|
||||||
@ -153,13 +179,28 @@ end function potential
|
|||||||
#+end_exercise
|
#+end_exercise
|
||||||
|
|
||||||
|
|
||||||
*Python*
|
**** Python
|
||||||
|
#+BEGIN_SRC python :results none
|
||||||
|
def psi(a, r):
|
||||||
|
# TODO
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
**** Python :solution:
|
||||||
#+BEGIN_SRC python :results none
|
#+BEGIN_SRC python :results none
|
||||||
def psi(a, r):
|
def psi(a, r):
|
||||||
return np.exp(-a*np.sqrt(np.dot(r,r)))
|
return np.exp(-a*np.sqrt(np.dot(r,r)))
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
*Fortran*
|
**** Fortran
|
||||||
|
#+BEGIN_SRC f90
|
||||||
|
double precision function psi(a, r)
|
||||||
|
implicit none
|
||||||
|
double precision, intent(in) :: a, r(3)
|
||||||
|
! TODO
|
||||||
|
end function psi
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
**** Fortran :solution:
|
||||||
#+BEGIN_SRC f90
|
#+BEGIN_SRC f90
|
||||||
double precision function psi(a, r)
|
double precision function psi(a, r)
|
||||||
implicit none
|
implicit none
|
||||||
@ -168,7 +209,7 @@ double precision function psi(a, r)
|
|||||||
end function psi
|
end function psi
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
*** Exercise 3
|
*** Exercise 4
|
||||||
#+begin_exercise
|
#+begin_exercise
|
||||||
Write a function which computes the local kinetic energy at $\mathbf{r}$.
|
Write a function which computes the local kinetic energy at $\mathbf{r}$.
|
||||||
The function accepts =a= and =r= as input arguments and returns the
|
The function accepts =a= and =r= as input arguments and returns the
|
||||||
@ -205,13 +246,28 @@ end function psi
|
|||||||
-\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right)
|
-\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right)
|
||||||
$$
|
$$
|
||||||
|
|
||||||
*Python*
|
**** Python
|
||||||
|
#+BEGIN_SRC python :results none
|
||||||
|
def kinetic(a,r):
|
||||||
|
# TODO
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
**** Python :solution:
|
||||||
#+BEGIN_SRC python :results none
|
#+BEGIN_SRC python :results none
|
||||||
def kinetic(a,r):
|
def kinetic(a,r):
|
||||||
return -0.5 * (a**2 - (2.*a)/np.sqrt(np.dot(r,r)))
|
return -0.5 * (a**2 - (2.*a)/np.sqrt(np.dot(r,r)))
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
*Fortran*
|
**** Fortran
|
||||||
|
#+BEGIN_SRC f90
|
||||||
|
double precision function kinetic(a,r)
|
||||||
|
implicit none
|
||||||
|
double precision, intent(in) :: a, r(3)
|
||||||
|
! TODO
|
||||||
|
end function kinetic
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
**** Fortran :solution:
|
||||||
#+BEGIN_SRC f90
|
#+BEGIN_SRC f90
|
||||||
double precision function kinetic(a,r)
|
double precision function kinetic(a,r)
|
||||||
implicit none
|
implicit none
|
||||||
@ -221,11 +277,12 @@ double precision function kinetic(a,r)
|
|||||||
end function kinetic
|
end function kinetic
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
*** Exercise 4
|
*** Exercise 5
|
||||||
#+begin_exercise
|
#+begin_exercise
|
||||||
Write a function which computes the local energy at $\mathbf{r}$.
|
Write a function which computes the local energy at $\mathbf{r}$,
|
||||||
The function accepts =x,y,z= as input arguments and returns the
|
using the previously defined functions.
|
||||||
local energy.
|
The function accepts =a= and =r= as input arguments and returns the
|
||||||
|
local kinetic energy.
|
||||||
#+end_exercise
|
#+end_exercise
|
||||||
|
|
||||||
$$
|
$$
|
||||||
@ -233,13 +290,28 @@ end function kinetic
|
|||||||
$$
|
$$
|
||||||
|
|
||||||
|
|
||||||
*Python*
|
**** Python
|
||||||
|
#+BEGIN_SRC python :results none
|
||||||
|
def e_loc(a,r):
|
||||||
|
#TODO
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
**** Python :solution:
|
||||||
#+BEGIN_SRC python :results none
|
#+BEGIN_SRC python :results none
|
||||||
def e_loc(a,r):
|
def e_loc(a,r):
|
||||||
return kinetic(a,r) + potential(r)
|
return kinetic(a,r) + potential(r)
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
*Fortran*
|
**** Fortran
|
||||||
|
#+BEGIN_SRC f90
|
||||||
|
double precision function e_loc(a,r)
|
||||||
|
implicit none
|
||||||
|
double precision, intent(in) :: a, r(3)
|
||||||
|
! TODO
|
||||||
|
end function e_loc
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
**** Fortran :solution:
|
||||||
#+BEGIN_SRC f90
|
#+BEGIN_SRC f90
|
||||||
double precision function e_loc(a,r)
|
double precision function e_loc(a,r)
|
||||||
implicit none
|
implicit none
|
||||||
@ -255,14 +327,16 @@ end function e_loc
|
|||||||
:header-args:f90: :tangle plot_hydrogen.f90
|
:header-args:f90: :tangle plot_hydrogen.f90
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
|
|
||||||
*** Exercise
|
*** Exercise
|
||||||
#+begin_exercise
|
#+begin_exercise
|
||||||
For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the
|
For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the
|
||||||
local energy along the $x$ axis.
|
local energy along the $x$ axis. In Python, you can use matplotlib
|
||||||
|
for example. In Fortran, it is convenient to write in a text file
|
||||||
|
the values of $x$ and $E_L(\mathbf{r})$ for each point, and use
|
||||||
|
Gnuplot to plot the files.
|
||||||
#+end_exercise
|
#+end_exercise
|
||||||
|
|
||||||
*Python*
|
**** Python
|
||||||
#+BEGIN_SRC python :results none
|
#+BEGIN_SRC python :results none
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
@ -270,20 +344,31 @@ import matplotlib.pyplot as plt
|
|||||||
from hydrogen import e_loc
|
from hydrogen import e_loc
|
||||||
|
|
||||||
x=np.linspace(-5,5)
|
x=np.linspace(-5,5)
|
||||||
|
|
||||||
def make_array(a):
|
|
||||||
y=np.array([ e_loc(a, np.array([t,0.,0.]) ) for t in x])
|
|
||||||
return y
|
|
||||||
|
|
||||||
plt.figure(figsize=(10,5))
|
plt.figure(figsize=(10,5))
|
||||||
|
|
||||||
|
# TODO
|
||||||
|
|
||||||
|
plt.tight_layout()
|
||||||
|
plt.legend()
|
||||||
|
plt.savefig("plot_py.png")
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
**** Python :solution:
|
||||||
|
#+BEGIN_SRC python :results none
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
from hydrogen import e_loc
|
||||||
|
|
||||||
|
x=np.linspace(-5,5)
|
||||||
|
plt.figure(figsize=(10,5))
|
||||||
|
|
||||||
for a in [0.1, 0.2, 0.5, 1., 1.5, 2.]:
|
for a in [0.1, 0.2, 0.5, 1., 1.5, 2.]:
|
||||||
y = make_array(a)
|
y=np.array([ e_loc(a, np.array([t,0.,0.]) ) for t in x])
|
||||||
plt.plot(x,y,label=f"a={a}")
|
plt.plot(x,y,label=f"a={a}")
|
||||||
|
|
||||||
plt.tight_layout()
|
plt.tight_layout()
|
||||||
|
|
||||||
plt.legend()
|
plt.legend()
|
||||||
|
|
||||||
plt.savefig("plot_py.png")
|
plt.savefig("plot_py.png")
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
@ -291,9 +376,47 @@ plt.savefig("plot_py.png")
|
|||||||
|
|
||||||
[[./plot_py.png]]
|
[[./plot_py.png]]
|
||||||
|
|
||||||
|
**** Fortran
|
||||||
|
#+begin_src f90
|
||||||
|
program plot
|
||||||
|
implicit none
|
||||||
|
double precision, external :: e_loc
|
||||||
|
|
||||||
|
double precision :: x(50), dx
|
||||||
|
integer :: i, j
|
||||||
|
|
||||||
*Fortran*
|
dx = 10.d0/(size(x)-1)
|
||||||
|
do i=1,size(x)
|
||||||
|
x(i) = -5.d0 + (i-1)*dx
|
||||||
|
end do
|
||||||
|
|
||||||
|
! TODO
|
||||||
|
|
||||||
|
end program plot
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
To compile and run:
|
||||||
|
|
||||||
|
#+begin_src sh :exports both
|
||||||
|
gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
|
||||||
|
./plot_hydrogen > data
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
To plot the data using gnuplot:
|
||||||
|
|
||||||
|
#+begin_src gnuplot :file plot.png :exports both
|
||||||
|
set grid
|
||||||
|
set xrange [-5:5]
|
||||||
|
set yrange [-2:1]
|
||||||
|
plot './data' index 0 using 1:2 with lines title 'a=0.1', \
|
||||||
|
'./data' index 1 using 1:2 with lines title 'a=0.2', \
|
||||||
|
'./data' index 2 using 1:2 with lines title 'a=0.5', \
|
||||||
|
'./data' index 3 using 1:2 with lines title 'a=1.0', \
|
||||||
|
'./data' index 4 using 1:2 with lines title 'a=1.5', \
|
||||||
|
'./data' index 5 using 1:2 with lines title 'a=2.0'
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
**** Fortran :solution:
|
||||||
#+begin_src f90
|
#+begin_src f90
|
||||||
program plot
|
program plot
|
||||||
implicit none
|
implicit none
|
||||||
@ -351,7 +474,7 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
|
|||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
[[file:plot.png]]
|
[[file:plot.png]]
|
||||||
|
|
||||||
** Numerical estimation of the energy
|
** TODO Numerical estimation of the energy
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:header-args:python: :tangle energy_hydrogen.py
|
:header-args:python: :tangle energy_hydrogen.py
|
||||||
:header-args:f90: :tangle energy_hydrogen.f90
|
:header-args:f90: :tangle energy_hydrogen.f90
|
||||||
@ -476,7 +599,7 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
|||||||
: a = 1.5000000000000000 E = -0.39242967082602065
|
: a = 1.5000000000000000 E = -0.39242967082602065
|
||||||
: a = 2.0000000000000000 E = -8.0869806678448772E-002
|
: a = 2.0000000000000000 E = -8.0869806678448772E-002
|
||||||
|
|
||||||
** Variance of the local energy
|
** TODO Variance of the local energy
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:header-args:python: :tangle variance_hydrogen.py
|
:header-args:python: :tangle variance_hydrogen.py
|
||||||
:header-args:f90: :tangle variance_hydrogen.f90
|
:header-args:f90: :tangle variance_hydrogen.f90
|
||||||
@ -618,7 +741,7 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
|
|||||||
: a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814270846534
|
: a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814270846534
|
||||||
|
|
||||||
|
|
||||||
* Variational Monte Carlo
|
* TODO Variational Monte Carlo
|
||||||
|
|
||||||
Numerical integration with deterministic methods is very efficient
|
Numerical integration with deterministic methods is very efficient
|
||||||
in low dimensions. When the number of dimensions becomes large,
|
in low dimensions. When the number of dimensions becomes large,
|
||||||
@ -629,7 +752,7 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
|
|||||||
to the discretization of space, and compute a statistical confidence
|
to the discretization of space, and compute a statistical confidence
|
||||||
interval.
|
interval.
|
||||||
|
|
||||||
** Computation of the statistical error
|
** TODO Computation of the statistical error
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:header-args:python: :tangle qmc_stats.py
|
:header-args:python: :tangle qmc_stats.py
|
||||||
:header-args:f90: :tangle qmc_stats.f90
|
:header-args:f90: :tangle qmc_stats.f90
|
||||||
@ -694,7 +817,7 @@ subroutine ave_error(x,n,ave,err)
|
|||||||
end subroutine ave_error
|
end subroutine ave_error
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
** Uniform sampling in the box
|
** TODO Uniform sampling in the box
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:header-args:python: :tangle qmc_uniform.py
|
:header-args:python: :tangle qmc_uniform.py
|
||||||
:header-args:f90: :tangle qmc_uniform.f90
|
:header-args:f90: :tangle qmc_uniform.f90
|
||||||
@ -816,7 +939,7 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
|
|||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
: E = -0.49588321986667677 +/- 7.1758863546737969E-004
|
: E = -0.49588321986667677 +/- 7.1758863546737969E-004
|
||||||
|
|
||||||
** Metropolis sampling with $\Psi^2$
|
** TODO Metropolis sampling with $\Psi^2$
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:header-args:python: :tangle qmc_metropolis.py
|
:header-args:python: :tangle qmc_metropolis.py
|
||||||
:header-args:f90: :tangle qmc_metropolis.f90
|
:header-args:f90: :tangle qmc_metropolis.f90
|
||||||
@ -1000,7 +1123,7 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_metropolis.f90 -o qmc_metropolis
|
|||||||
: E = -0.49478505004797046 +/- 2.0493795299184956E-004
|
: E = -0.49478505004797046 +/- 2.0493795299184956E-004
|
||||||
: A = 0.51737800000000000 +/- 4.1827406733181444E-004
|
: A = 0.51737800000000000 +/- 4.1827406733181444E-004
|
||||||
|
|
||||||
** Gaussian random number generator
|
** TODO Gaussian random number generator
|
||||||
|
|
||||||
To obtain Gaussian-distributed random numbers, you can apply the
|
To obtain Gaussian-distributed random numbers, you can apply the
|
||||||
[[https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform][Box Muller transform]] to uniform random numbers:
|
[[https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform][Box Muller transform]] to uniform random numbers:
|
||||||
@ -1045,7 +1168,7 @@ subroutine random_gauss(z,n)
|
|||||||
end subroutine random_gauss
|
end subroutine random_gauss
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
** Generalized Metropolis algorithm
|
** TODO Generalized Metropolis algorithm
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:header-args:python: :tangle vmc_metropolis.py
|
:header-args:python: :tangle vmc_metropolis.py
|
||||||
:header-args:f90: :tangle vmc_metropolis.f90
|
:header-args:f90: :tangle vmc_metropolis.f90
|
||||||
@ -1290,9 +1413,9 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
|
|||||||
:header-args:f90: :tangle dmc.f90
|
:header-args:f90: :tangle dmc.f90
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
** Hydrogen atom
|
** TODO Hydrogen atom
|
||||||
|
|
||||||
**** Exercise
|
*** Exercise
|
||||||
|
|
||||||
#+begin_exercise
|
#+begin_exercise
|
||||||
Modify the Metropolis VMC program to introduce the PDMC weight.
|
Modify the Metropolis VMC program to introduce the PDMC weight.
|
||||||
@ -1439,7 +1562,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
|
|||||||
: A = 0.78861366666666655 +/- 3.5096729498002445E-004
|
: A = 0.78861366666666655 +/- 3.5096729498002445E-004
|
||||||
|
|
||||||
|
|
||||||
** Dihydrogen
|
** TODO Dihydrogen
|
||||||
|
|
||||||
We will now consider the H_2 molecule in a minimal basis composed of the
|
We will now consider the H_2 molecule in a minimal basis composed of the
|
||||||
$1s$ orbitals of the hydrogen atoms:
|
$1s$ orbitals of the hydrogen atoms:
|
||||||
|
Loading…
Reference in New Issue
Block a user