mirror of
https://github.com/TREX-CoE/qmc-lttc.git
synced 2024-12-22 04:15:01 +01:00
Changing a=0.9 to a=1.2 to avoid population explosion in DMC
This commit is contained in:
parent
e697ff2da4
commit
9c937da308
111
QMC.org
111
QMC.org
@ -1185,7 +1185,7 @@ end subroutine ave_error
|
|||||||
*** Exercise
|
*** Exercise
|
||||||
|
|
||||||
#+begin_exercise
|
#+begin_exercise
|
||||||
Parameterize the wave function with $a=0.9$. Perform 30
|
Parameterize the wave function with $a=1.2$. Perform 30
|
||||||
independent Monte Carlo runs, each with 100 000 Monte Carlo
|
independent Monte Carlo runs, each with 100 000 Monte Carlo
|
||||||
steps. Store the final energies of each run and use this array to
|
steps. Store the final energies of each run and use this array to
|
||||||
compute the average energy and the associated error bar.
|
compute the average energy and the associated error bar.
|
||||||
@ -1206,7 +1206,7 @@ from qmc_stats import *
|
|||||||
def MonteCarlo(a, nmax):
|
def MonteCarlo(a, nmax):
|
||||||
# TODO
|
# TODO
|
||||||
|
|
||||||
a = 0.9
|
a = 1.2
|
||||||
nmax = 100000
|
nmax = 100000
|
||||||
|
|
||||||
#TODO
|
#TODO
|
||||||
@ -1244,7 +1244,7 @@ end subroutine uniform_montecarlo
|
|||||||
|
|
||||||
program qmc
|
program qmc
|
||||||
implicit none
|
implicit none
|
||||||
double precision, parameter :: a = 0.9
|
double precision, parameter :: a = 1.2d0
|
||||||
integer*8 , parameter :: nmax = 100000
|
integer*8 , parameter :: nmax = 100000
|
||||||
integer , parameter :: nruns = 30
|
integer , parameter :: nruns = 30
|
||||||
|
|
||||||
@ -1287,7 +1287,7 @@ def MonteCarlo(a, nmax):
|
|||||||
|
|
||||||
return energy / normalization
|
return energy / normalization
|
||||||
|
|
||||||
a = 0.9
|
a = 1.2
|
||||||
nmax = 100000
|
nmax = 100000
|
||||||
|
|
||||||
X = [MonteCarlo(a,nmax) for i in range(30)]
|
X = [MonteCarlo(a,nmax) for i in range(30)]
|
||||||
@ -1297,7 +1297,7 @@ print(f"E = {E} +/- {deltaE}")
|
|||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
: E = -0.4956255109300764 +/- 0.0007082875482711226
|
: E = -0.4773221805255284 +/- 0.0022489426510479975
|
||||||
|
|
||||||
*Fortran*
|
*Fortran*
|
||||||
#+begin_note
|
#+begin_note
|
||||||
@ -1341,7 +1341,7 @@ end subroutine uniform_montecarlo
|
|||||||
|
|
||||||
program qmc
|
program qmc
|
||||||
implicit none
|
implicit none
|
||||||
double precision, parameter :: a = 0.9
|
double precision, parameter :: a = 1.2d0
|
||||||
integer*8 , parameter :: nmax = 100000
|
integer*8 , parameter :: nmax = 100000
|
||||||
integer , parameter :: nruns = 30
|
integer , parameter :: nruns = 30
|
||||||
|
|
||||||
@ -1365,7 +1365,7 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
|
|||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
: E = -0.49518773675598715 +/- 5.2391494923686175E-004
|
: E = -0.48084122147238995 +/- 2.4983775878329355E-003
|
||||||
|
|
||||||
** Metropolis sampling with $\Psi^2$
|
** Metropolis sampling with $\Psi^2$
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
@ -1420,10 +1420,14 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
|
|||||||
which, for our choice of transition probability, becomes
|
which, for our choice of transition probability, becomes
|
||||||
|
|
||||||
$$
|
$$
|
||||||
A(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{P(\mathbf{r}_{n+1})}{P(\mathbf{r}_{n})}\right)= \min\left(1,\frac{\Psi(\mathbf{r}_{n+1})^2}{\Psi(\mathbf{r}_{n})^2}\right)\,.
|
A(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{P(\mathbf{r}_{n+1})}{P(\mathbf{r}_{n})}\right)= \min\left(1,\frac{|\Psi(\mathbf{r}_{n+1})|^2}{|\Psi(\mathbf{r}_{n})|^2}\right)\,.
|
||||||
$$
|
$$
|
||||||
|
|
||||||
Explain why the transition probability cancels out in the expression of $A$. Also note that we do not need to compute the norm of the wave function!
|
#+begin_exercise
|
||||||
|
Explain why the transition probability cancels out in the
|
||||||
|
expression of $A$.
|
||||||
|
#+end_exercise
|
||||||
|
Also note that we do not need to compute the norm of the wave function!
|
||||||
|
|
||||||
The algorithm is summarized as follows:
|
The algorithm is summarized as follows:
|
||||||
|
|
||||||
@ -1439,27 +1443,32 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
|
|||||||
A common error is to remove the rejected samples from the
|
A common error is to remove the rejected samples from the
|
||||||
calculation of the average. *Don't do it!*
|
calculation of the average. *Don't do it!*
|
||||||
|
|
||||||
All samples should be kept, from both accepted and rejected moves.
|
All samples should be kept, from both accepted /and/ rejected moves.
|
||||||
#+end_note
|
#+end_note
|
||||||
|
|
||||||
If the box is infinitely small, the ratio will be very close
|
|
||||||
to one and all the steps will be accepted. However, the moves will be
|
|
||||||
very correlated and you will visit the configurational space very slowly.
|
|
||||||
|
|
||||||
On the other hand, if you propose too large moves, the number of
|
*** Optimal step size
|
||||||
accepted steps will decrease because the ratios might become
|
|
||||||
small. If the number of accepted steps is close to zero, then the
|
|
||||||
space is not well sampled either.
|
|
||||||
|
|
||||||
The size of the move should be adjusted so that it is as large as
|
If the box is infinitely small, the ratio will be very close
|
||||||
possible, keeping the number of accepted steps not too small. To
|
to one and all the steps will be accepted. However, the moves will be
|
||||||
achieve that, we define the acceptance rate as the number of
|
very correlated and you will visit the configurational space very slowly.
|
||||||
accepted steps over the total number of steps. Adjusting the time
|
|
||||||
step such that the acceptance rate is close to 0.5 is a good
|
|
||||||
compromise for the current problem.
|
|
||||||
|
|
||||||
NOTE: below, we use the symbol $\delta t$ to denote $\delta L$ since we will use
|
On the other hand, if you propose too large moves, the number of
|
||||||
the same variable later on to store a time step.
|
accepted steps will decrease because the ratios might become
|
||||||
|
small. If the number of accepted steps is close to zero, then the
|
||||||
|
space is not well sampled either.
|
||||||
|
|
||||||
|
The size of the move should be adjusted so that it is as large as
|
||||||
|
possible, keeping the number of accepted steps not too small. To
|
||||||
|
achieve that, we define the acceptance rate as the number of
|
||||||
|
accepted steps over the total number of steps. Adjusting the time
|
||||||
|
step such that the acceptance rate is close to 0.5 is a good
|
||||||
|
compromise for the current problem.
|
||||||
|
|
||||||
|
#+begin_note
|
||||||
|
Below, we use the symbol $\delta t$ to denote $\delta L$ since we will use
|
||||||
|
the same variable later on to store a time step.
|
||||||
|
#+end_note
|
||||||
|
|
||||||
|
|
||||||
*** Exercise
|
*** Exercise
|
||||||
@ -1489,7 +1498,7 @@ def MonteCarlo(a,nmax,dt):
|
|||||||
|
|
||||||
|
|
||||||
# Run simulation
|
# Run simulation
|
||||||
a = 0.9
|
a = 1.2
|
||||||
nmax = 100000
|
nmax = 100000
|
||||||
dt = #TODO
|
dt = #TODO
|
||||||
|
|
||||||
@ -1506,6 +1515,8 @@ A, deltaA = ave_error(X)
|
|||||||
print(f"A = {A} +/- {deltaA}")
|
print(f"A = {A} +/- {deltaA}")
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
|
#+RESULTS:
|
||||||
|
|
||||||
*Fortran*
|
*Fortran*
|
||||||
#+BEGIN_SRC f90 :tangle none
|
#+BEGIN_SRC f90 :tangle none
|
||||||
subroutine metropolis_montecarlo(a,nmax,dt,energy,accep)
|
subroutine metropolis_montecarlo(a,nmax,dt,energy,accep)
|
||||||
@ -1529,7 +1540,7 @@ end subroutine metropolis_montecarlo
|
|||||||
|
|
||||||
program qmc
|
program qmc
|
||||||
implicit none
|
implicit none
|
||||||
double precision, parameter :: a = 0.9d0
|
double precision, parameter :: a = 1.2d0
|
||||||
double precision, parameter :: dt = ! TODO
|
double precision, parameter :: dt = ! TODO
|
||||||
integer*8 , parameter :: nmax = 100000
|
integer*8 , parameter :: nmax = 100000
|
||||||
integer , parameter :: nruns = 30
|
integer , parameter :: nruns = 30
|
||||||
@ -1588,9 +1599,9 @@ def MonteCarlo(a,nmax,dt):
|
|||||||
return energy/nmax, N_accep/nmax
|
return energy/nmax, N_accep/nmax
|
||||||
|
|
||||||
# Run simulation
|
# Run simulation
|
||||||
a = 0.9
|
a = 1.2
|
||||||
nmax = 100000
|
nmax = 100000
|
||||||
dt = 1.3
|
dt = 1.0
|
||||||
|
|
||||||
X0 = [ MonteCarlo(a,nmax,dt) for i in range(30)]
|
X0 = [ MonteCarlo(a,nmax,dt) for i in range(30)]
|
||||||
|
|
||||||
@ -1606,8 +1617,8 @@ print(f"A = {A} +/- {deltaA}")
|
|||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
: E = -0.4950720838131573 +/- 0.00019089638602238043
|
: E = -0.4802595860693983 +/- 0.0005124420418289207
|
||||||
: A = 0.5172960000000001 +/- 0.0003443446549306529
|
: A = 0.5074913333333334 +/- 0.000350889422714878
|
||||||
|
|
||||||
*Fortran*
|
*Fortran*
|
||||||
#+BEGIN_SRC f90 :exports code
|
#+BEGIN_SRC f90 :exports code
|
||||||
@ -1662,8 +1673,8 @@ end subroutine metropolis_montecarlo
|
|||||||
|
|
||||||
program qmc
|
program qmc
|
||||||
implicit none
|
implicit none
|
||||||
double precision, parameter :: a = 0.9d0
|
double precision, parameter :: a = 1.2d0
|
||||||
double precision, parameter :: dt = 1.3d0
|
double precision, parameter :: dt = 1.0d0
|
||||||
integer*8 , parameter :: nmax = 100000
|
integer*8 , parameter :: nmax = 100000
|
||||||
integer , parameter :: nruns = 30
|
integer , parameter :: nruns = 30
|
||||||
|
|
||||||
@ -1689,8 +1700,8 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_metropolis.f90 -o qmc_metropolis
|
|||||||
./qmc_metropolis
|
./qmc_metropolis
|
||||||
#+end_src
|
#+end_src
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
: E = -0.49503130891988767 +/- 1.7160104275040037E-004
|
: E = -0.47948142754168033 +/- 4.8410177863919307E-004
|
||||||
: A = 0.51695266666666673 +/- 4.0445505648997396E-004
|
: A = 0.50762633333333318 +/- 3.4601756760043725E-004
|
||||||
|
|
||||||
** Gaussian random number generator
|
** Gaussian random number generator
|
||||||
|
|
||||||
@ -1899,7 +1910,7 @@ def MonteCarlo(a,nmax,dt):
|
|||||||
# TODO
|
# TODO
|
||||||
|
|
||||||
# Run simulation
|
# Run simulation
|
||||||
a = 0.9
|
a = 1.2
|
||||||
nmax = 100000
|
nmax = 100000
|
||||||
dt = # TODO
|
dt = # TODO
|
||||||
|
|
||||||
@ -1939,7 +1950,7 @@ end subroutine variational_montecarlo
|
|||||||
|
|
||||||
program qmc
|
program qmc
|
||||||
implicit none
|
implicit none
|
||||||
double precision, parameter :: a = 0.9
|
double precision, parameter :: a = 1.2d0
|
||||||
double precision, parameter :: dt = ! TODO
|
double precision, parameter :: dt = ! TODO
|
||||||
integer*8 , parameter :: nmax = 100000
|
integer*8 , parameter :: nmax = 100000
|
||||||
integer , parameter :: nruns = 30
|
integer , parameter :: nruns = 30
|
||||||
@ -2014,7 +2025,7 @@ def MonteCarlo(a,nmax,dt):
|
|||||||
|
|
||||||
|
|
||||||
# Run simulation
|
# Run simulation
|
||||||
a = 0.9
|
a = 1.2
|
||||||
nmax = 100000
|
nmax = 100000
|
||||||
dt = 1.3
|
dt = 1.3
|
||||||
|
|
||||||
@ -2112,8 +2123,8 @@ end subroutine variational_montecarlo
|
|||||||
|
|
||||||
program qmc
|
program qmc
|
||||||
implicit none
|
implicit none
|
||||||
double precision, parameter :: a = 0.9
|
double precision, parameter :: a = 1.2d0
|
||||||
double precision, parameter :: dt = 1.0
|
double precision, parameter :: dt = 1.0d0
|
||||||
integer*8 , parameter :: nmax = 100000
|
integer*8 , parameter :: nmax = 100000
|
||||||
integer , parameter :: nruns = 30
|
integer , parameter :: nruns = 30
|
||||||
|
|
||||||
@ -2442,7 +2453,7 @@ def MonteCarlo(a, nmax, dt, Eref):
|
|||||||
# TODO
|
# TODO
|
||||||
|
|
||||||
# Run simulation
|
# Run simulation
|
||||||
a = 0.9
|
a = 1.2
|
||||||
nmax = 100000
|
nmax = 100000
|
||||||
dt = 0.01
|
dt = 0.01
|
||||||
E_ref = -0.5
|
E_ref = -0.5
|
||||||
@ -2484,7 +2495,7 @@ end subroutine pdmc
|
|||||||
|
|
||||||
program qmc
|
program qmc
|
||||||
implicit none
|
implicit none
|
||||||
double precision, parameter :: a = 0.9
|
double precision, parameter :: a = 1.2d0
|
||||||
double precision, parameter :: dt = 0.1d0
|
double precision, parameter :: dt = 0.1d0
|
||||||
double precision, parameter :: E_ref = -0.5d0
|
double precision, parameter :: E_ref = -0.5d0
|
||||||
double precision, parameter :: tau = 10.d0
|
double precision, parameter :: tau = 10.d0
|
||||||
@ -2576,7 +2587,7 @@ def MonteCarlo(a, nmax, dt, tau, Eref):
|
|||||||
|
|
||||||
|
|
||||||
# Run simulation
|
# Run simulation
|
||||||
a = 0.9
|
a = 1.2
|
||||||
nmax = 100000
|
nmax = 100000
|
||||||
dt = 0.1
|
dt = 0.1
|
||||||
tau = 10.
|
tau = 10.
|
||||||
@ -2694,7 +2705,7 @@ end subroutine pdmc
|
|||||||
|
|
||||||
program qmc
|
program qmc
|
||||||
implicit none
|
implicit none
|
||||||
double precision, parameter :: a = 0.9
|
double precision, parameter :: a = 1.2d0
|
||||||
double precision, parameter :: dt = 0.1d0
|
double precision, parameter :: dt = 0.1d0
|
||||||
double precision, parameter :: E_ref = -0.5d0
|
double precision, parameter :: E_ref = -0.5d0
|
||||||
double precision, parameter :: tau = 10.d0
|
double precision, parameter :: tau = 10.d0
|
||||||
@ -2814,7 +2825,7 @@ def MonteCarlo(a,nmax):
|
|||||||
E += w * e_loc(a,r)
|
E += w * e_loc(a,r)
|
||||||
return E/N
|
return E/N
|
||||||
|
|
||||||
a = 0.9
|
a = 1.2
|
||||||
nmax = 100000
|
nmax = 100000
|
||||||
X = [MonteCarlo(a,nmax) for i in range(30)]
|
X = [MonteCarlo(a,nmax) for i in range(30)]
|
||||||
E, deltaE = ave_error(X)
|
E, deltaE = ave_error(X)
|
||||||
@ -2860,7 +2871,7 @@ end subroutine gaussian_montecarlo
|
|||||||
|
|
||||||
program qmc
|
program qmc
|
||||||
implicit none
|
implicit none
|
||||||
double precision, parameter :: a = 0.9
|
double precision, parameter :: a = 1.2d0
|
||||||
integer*8 , parameter :: nmax = 100000
|
integer*8 , parameter :: nmax = 100000
|
||||||
integer , parameter :: nruns = 30
|
integer , parameter :: nruns = 30
|
||||||
|
|
||||||
@ -3003,7 +3014,7 @@ def MonteCarlo(a,dt,nmax):
|
|||||||
return E/N
|
return E/N
|
||||||
|
|
||||||
|
|
||||||
a = 0.9
|
a = 1.2
|
||||||
nmax = 100000
|
nmax = 100000
|
||||||
dt = 0.2
|
dt = 0.2
|
||||||
X = [MonteCarlo(a,dt,nmax) for i in range(30)]
|
X = [MonteCarlo(a,dt,nmax) for i in range(30)]
|
||||||
@ -3046,8 +3057,8 @@ end subroutine variational_montecarlo
|
|||||||
|
|
||||||
program qmc
|
program qmc
|
||||||
implicit none
|
implicit none
|
||||||
double precision, parameter :: a = 0.9
|
double precision, parameter :: a = 1.2d0
|
||||||
double precision, parameter :: dt = 0.2
|
double precision, parameter :: dt = 0.2d0
|
||||||
integer*8 , parameter :: nmax = 100000
|
integer*8 , parameter :: nmax = 100000
|
||||||
integer , parameter :: nruns = 30
|
integer , parameter :: nruns = 30
|
||||||
|
|
||||||
@ -3093,4 +3104,6 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc
|
|||||||
| <2021-02-04 Thu 12:15-12:30> | 2.4 |
|
| <2021-02-04 Thu 12:15-12:30> | 2.4 |
|
||||||
|------------------------------+---------|
|
|------------------------------+---------|
|
||||||
| <2021-02-04 Thu 14:00-14:10> | 3.1 |
|
| <2021-02-04 Thu 14:00-14:10> | 3.1 |
|
||||||
|
| <2021-02-04 Thu 14:10-14:30> | 3.2 |
|
||||||
|
| <2021-02-04 Thu 14:30-15:30> | 3.3 |
|
||||||
|------------------------------+---------|
|
|------------------------------+---------|
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from hydrogen import e_loc, psi
|
from hydrogen import e_loc, psi
|
||||||
|
|
||||||
|
@ -43,7 +43,8 @@ double precision function e_loc(a,r)
|
|||||||
implicit none
|
implicit none
|
||||||
double precision, intent(in) :: a, r(3)
|
double precision, intent(in) :: a, r(3)
|
||||||
|
|
||||||
double precision, external :: kinetic, potential
|
double precision, external :: kinetic
|
||||||
|
double precision, external :: potential
|
||||||
|
|
||||||
e_loc = kinetic(a,r) + potential(r)
|
e_loc = kinetic(a,r) + potential(r)
|
||||||
|
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
def potential(r):
|
def potential(r):
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
@ -32,7 +32,7 @@ end subroutine gaussian_montecarlo
|
|||||||
|
|
||||||
program qmc
|
program qmc
|
||||||
implicit none
|
implicit none
|
||||||
double precision, parameter :: a = 0.9
|
double precision, parameter :: a = 1.2d0
|
||||||
integer*8 , parameter :: nmax = 100000
|
integer*8 , parameter :: nmax = 100000
|
||||||
integer , parameter :: nruns = 30
|
integer , parameter :: nruns = 30
|
||||||
|
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
from hydrogen import *
|
from hydrogen import *
|
||||||
from qmc_stats import *
|
from qmc_stats import *
|
||||||
|
|
||||||
@ -16,7 +18,7 @@ def MonteCarlo(a,nmax):
|
|||||||
E += w * e_loc(a,r)
|
E += w * e_loc(a,r)
|
||||||
return E/N
|
return E/N
|
||||||
|
|
||||||
a = 0.9
|
a = 1.2
|
||||||
nmax = 100000
|
nmax = 100000
|
||||||
X = [MonteCarlo(a,nmax) for i in range(30)]
|
X = [MonteCarlo(a,nmax) for i in range(30)]
|
||||||
E, deltaE = ave_error(X)
|
E, deltaE = ave_error(X)
|
||||||
|
@ -49,8 +49,8 @@ end subroutine metropolis_montecarlo
|
|||||||
|
|
||||||
program qmc
|
program qmc
|
||||||
implicit none
|
implicit none
|
||||||
double precision, parameter :: a = 0.9d0
|
double precision, parameter :: a = 1.2d0
|
||||||
double precision, parameter :: dt = 1.3d0
|
double precision, parameter :: dt = 1.0d0
|
||||||
integer*8 , parameter :: nmax = 100000
|
integer*8 , parameter :: nmax = 100000
|
||||||
integer , parameter :: nruns = 30
|
integer , parameter :: nruns = 30
|
||||||
|
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
from hydrogen import *
|
from hydrogen import *
|
||||||
from qmc_stats import *
|
from qmc_stats import *
|
||||||
|
|
||||||
@ -25,9 +27,9 @@ def MonteCarlo(a,nmax,dt):
|
|||||||
return energy/nmax, N_accep/nmax
|
return energy/nmax, N_accep/nmax
|
||||||
|
|
||||||
# Run simulation
|
# Run simulation
|
||||||
a = 0.9
|
a = 1.2
|
||||||
nmax = 100000
|
nmax = 100000
|
||||||
dt = 1.3
|
dt = 1.0
|
||||||
|
|
||||||
X0 = [ MonteCarlo(a,nmax,dt) for i in range(30)]
|
X0 = [ MonteCarlo(a,nmax,dt) for i in range(30)]
|
||||||
|
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
from math import sqrt
|
from math import sqrt
|
||||||
def ave_error(arr):
|
def ave_error(arr):
|
||||||
M = len(arr)
|
M = len(arr)
|
||||||
|
@ -31,7 +31,7 @@ end subroutine uniform_montecarlo
|
|||||||
|
|
||||||
program qmc
|
program qmc
|
||||||
implicit none
|
implicit none
|
||||||
double precision, parameter :: a = 0.9
|
double precision, parameter :: a = 1.2d0
|
||||||
integer*8 , parameter :: nmax = 100000
|
integer*8 , parameter :: nmax = 100000
|
||||||
integer , parameter :: nruns = 30
|
integer , parameter :: nruns = 30
|
||||||
|
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
from hydrogen import *
|
from hydrogen import *
|
||||||
from qmc_stats import *
|
from qmc_stats import *
|
||||||
|
|
||||||
@ -16,7 +18,7 @@ def MonteCarlo(a, nmax):
|
|||||||
|
|
||||||
return energy / normalization
|
return energy / normalization
|
||||||
|
|
||||||
a = 0.9
|
a = 1.2
|
||||||
nmax = 100000
|
nmax = 100000
|
||||||
|
|
||||||
X = [MonteCarlo(a,nmax) for i in range(30)]
|
X = [MonteCarlo(a,nmax) for i in range(30)]
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from hydrogen import e_loc, psi
|
from hydrogen import e_loc, psi
|
||||||
|
|
||||||
|
4
vmc.f90
4
vmc.f90
@ -28,8 +28,8 @@ end subroutine variational_montecarlo
|
|||||||
|
|
||||||
program qmc
|
program qmc
|
||||||
implicit none
|
implicit none
|
||||||
double precision, parameter :: a = 0.9
|
double precision, parameter :: a = 1.2d0
|
||||||
double precision, parameter :: dt = 0.2
|
double precision, parameter :: dt = 0.2d0
|
||||||
integer*8 , parameter :: nmax = 100000
|
integer*8 , parameter :: nmax = 100000
|
||||||
integer , parameter :: nruns = 30
|
integer , parameter :: nruns = 30
|
||||||
|
|
||||||
|
4
vmc.py
4
vmc.py
@ -1,3 +1,5 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
from hydrogen import *
|
from hydrogen import *
|
||||||
from qmc_stats import *
|
from qmc_stats import *
|
||||||
|
|
||||||
@ -19,7 +21,7 @@ def MonteCarlo(a,dt,nmax):
|
|||||||
return E/N
|
return E/N
|
||||||
|
|
||||||
|
|
||||||
a = 0.9
|
a = 1.2
|
||||||
nmax = 100000
|
nmax = 100000
|
||||||
dt = 0.2
|
dt = 0.2
|
||||||
X = [MonteCarlo(a,dt,nmax) for i in range(30)]
|
X = [MonteCarlo(a,dt,nmax) for i in range(30)]
|
||||||
|
@ -73,8 +73,8 @@ end subroutine variational_montecarlo
|
|||||||
|
|
||||||
program qmc
|
program qmc
|
||||||
implicit none
|
implicit none
|
||||||
double precision, parameter :: a = 0.9
|
double precision, parameter :: a = 1.2d0
|
||||||
double precision, parameter :: dt = 1.0
|
double precision, parameter :: dt = 1.0d0
|
||||||
integer*8 , parameter :: nmax = 100000
|
integer*8 , parameter :: nmax = 100000
|
||||||
integer , parameter :: nruns = 30
|
integer , parameter :: nruns = 30
|
||||||
|
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
from hydrogen import *
|
from hydrogen import *
|
||||||
from qmc_stats import *
|
from qmc_stats import *
|
||||||
|
|
||||||
@ -41,7 +43,7 @@ def MonteCarlo(a,nmax,dt):
|
|||||||
|
|
||||||
|
|
||||||
# Run simulation
|
# Run simulation
|
||||||
a = 0.9
|
a = 1.2
|
||||||
nmax = 100000
|
nmax = 100000
|
||||||
dt = 1.3
|
dt = 1.3
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user