1
0
mirror of https://github.com/TREX-CoE/qmc-lttc.git synced 2025-01-03 01:56:20 +01:00
This commit is contained in:
scemama 2021-02-02 12:31:24 +00:00
parent 52c4400031
commit 8df8ddbf26

View File

@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2021-02-02 Tue 10:29 -->
<!-- 2021-02-02 Tue 12:31 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Quantum Monte Carlo</title>
@ -329,152 +329,152 @@ for the JavaScript code in this tag.
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org6cc7181">1. Introduction</a>
<li><a href="#orgf5e741a">1. Introduction</a>
<ul>
<li><a href="#org5afd847">1.1. Energy and local energy</a></li>
<li><a href="#org12bc49f">1.1. Energy and local energy</a></li>
</ul>
</li>
<li><a href="#org2ec7e1b">2. Numerical evaluation of the energy of the hydrogen atom</a>
<li><a href="#orgd6dc021">2. Numerical evaluation of the energy of the hydrogen atom</a>
<ul>
<li><a href="#orgfcc8aee">2.1. Local energy</a>
<li><a href="#org0c68e1b">2.1. Local energy</a>
<ul>
<li><a href="#org35672c8">2.1.1. Exercise 1</a>
<li><a href="#orga7198b0">2.1.1. Exercise 1</a>
<ul>
<li><a href="#org225c317">2.1.1.1. Solution</a></li>
<li><a href="#orgbc1bccd">2.1.1.1. Solution</a></li>
</ul>
</li>
<li><a href="#orgd36eef4">2.1.2. Exercise 2</a>
<li><a href="#org259c34d">2.1.2. Exercise 2</a>
<ul>
<li><a href="#orgffb5984">2.1.2.1. Solution</a></li>
<li><a href="#orgc12abfd">2.1.2.1. Solution</a></li>
</ul>
</li>
<li><a href="#orgabefeb9">2.1.3. Exercise 3</a>
<li><a href="#orga2c7fc2">2.1.3. Exercise 3</a>
<ul>
<li><a href="#org3119096">2.1.3.1. Solution</a></li>
<li><a href="#org5929583">2.1.3.1. Solution</a></li>
</ul>
</li>
<li><a href="#orge6a9288">2.1.4. Exercise 4</a>
<li><a href="#orgab6a45d">2.1.4. Exercise 4</a>
<ul>
<li><a href="#org89a050a">2.1.4.1. Solution</a></li>
<li><a href="#org47942e7">2.1.4.1. Solution</a></li>
</ul>
</li>
<li><a href="#org90a766f">2.1.5. Exercise 5</a>
<li><a href="#org9de3fc5">2.1.5. Exercise 5</a>
<ul>
<li><a href="#org1669e04">2.1.5.1. Solution</a></li>
<li><a href="#org19975c9">2.1.5.1. Solution</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#orgc481fb4">2.2. Plot of the local energy along the \(x\) axis</a>
<li><a href="#org96fee99">2.2. Plot of the local energy along the \(x\) axis</a>
<ul>
<li><a href="#org8a4f299">2.2.1. Exercise</a>
<li><a href="#orgb86a7fc">2.2.1. Exercise</a>
<ul>
<li><a href="#org5f96d93">2.2.1.1. Solution</a></li>
<li><a href="#org53da663">2.2.1.1. Solution</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#orgbcc283c">2.3. Numerical estimation of the energy</a>
<li><a href="#orgedc6dec">2.3. Numerical estimation of the energy</a>
<ul>
<li><a href="#org5506022">2.3.1. Exercise</a>
<li><a href="#org86cee65">2.3.1. Exercise</a>
<ul>
<li><a href="#org74db5d8">2.3.1.1. Solution</a></li>
<li><a href="#org86e5e11">2.3.1.1. Solution</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#org1ceafe1">2.4. Variance of the local energy</a>
<li><a href="#org93b4d4e">2.4. Variance of the local energy</a>
<ul>
<li><a href="#orge85aa1c">2.4.1. Exercise (optional)</a>
<li><a href="#org6c55698">2.4.1. Exercise (optional)</a>
<ul>
<li><a href="#org0940ecc">2.4.1.1. Solution</a></li>
<li><a href="#org87a6e8b">2.4.1.1. Solution</a></li>
</ul>
</li>
<li><a href="#orgb488446">2.4.2. Exercise</a>
<li><a href="#org535ef1c">2.4.2. Exercise</a>
<ul>
<li><a href="#org5d375ab">2.4.2.1. Solution</a></li>
<li><a href="#org1c2caec">2.4.2.1. Solution</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li><a href="#org85e47f4">3. Variational Monte Carlo</a>
<li><a href="#orgff5fcc8">3. Variational Monte Carlo</a>
<ul>
<li><a href="#org17350f1">3.1. Computation of the statistical error</a>
<li><a href="#orgf13789e">3.1. Computation of the statistical error</a>
<ul>
<li><a href="#org97a29b6">3.1.1. Exercise</a>
<li><a href="#org67f94e9">3.1.1. Exercise</a>
<ul>
<li><a href="#orga749707">3.1.1.1. Solution</a></li>
<li><a href="#orgb5c6b18">3.1.1.1. Solution</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#orgd721f86">3.2. Uniform sampling in the box</a>
<li><a href="#org086611c">3.2. Uniform sampling in the box</a>
<ul>
<li><a href="#org215979f">3.2.1. Exercise</a>
<li><a href="#orge2aa051">3.2.1. Exercise</a>
<ul>
<li><a href="#orgbd3c736">3.2.1.1. Solution</a></li>
<li><a href="#org010bc97">3.2.1.1. Solution</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#orgf676c01">3.3. Metropolis sampling with \(\Psi^2\)</a>
<li><a href="#orga179058">3.3. Metropolis sampling with \(\Psi^2\)</a>
<ul>
<li><a href="#orgc511dca">3.3.1. Exercise</a>
<li><a href="#orgf135ba9">3.3.1. Exercise</a>
<ul>
<li><a href="#org8b5ee4b">3.3.1.1. Solution</a></li>
<li><a href="#org4e7742d">3.3.1.1. Solution</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#org542b847">3.4. Gaussian random number generator</a></li>
<li><a href="#orgce06b27">3.5. Generalized Metropolis algorithm</a>
<li><a href="#orgebf484d">3.4. Gaussian random number generator</a></li>
<li><a href="#org6a38ece">3.5. Generalized Metropolis algorithm</a>
<ul>
<li><a href="#org6877da4">3.5.1. Exercise 1</a>
<li><a href="#org8b0f271">3.5.1. Exercise 1</a>
<ul>
<li><a href="#org9f0138a">3.5.1.1. Solution</a></li>
<li><a href="#orgab98b8b">3.5.1.1. Solution</a></li>
</ul>
</li>
<li><a href="#org36805af">3.5.2. Exercise 2</a>
<li><a href="#org3e2f697">3.5.2. Exercise 2</a>
<ul>
<li><a href="#orgd6805a2">3.5.2.1. Solution</a></li>
<li><a href="#org4a84a88">3.5.2.1. Solution</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li><a href="#org2d2753c">4. Diffusion Monte Carlo</a>
<li><a href="#org84bf2a5">4. Diffusion Monte Carlo</a>
<ul>
<li><a href="#org3f5bc99">4.1. Schrödinger equation in imaginary time</a></li>
<li><a href="#orgbd4d3c8">4.2. Diffusion and branching</a></li>
<li><a href="#org11ded29">4.3. Importance sampling</a>
<li><a href="#org807669a">4.1. Schrödinger equation in imaginary time</a></li>
<li><a href="#org9cf673b">4.2. Diffusion and branching</a></li>
<li><a href="#org7419d64">4.3. Importance sampling</a>
<ul>
<li><a href="#org5669f14">4.3.1. Appendix : Details of the Derivation</a></li>
<li><a href="#org9ccfe0f">4.3.1. Appendix : Details of the Derivation</a></li>
</ul>
</li>
<li><a href="#orged7a00f">4.4. Pure Diffusion Monte Carlo (PDMC)</a></li>
<li><a href="#org0bcdcd6">4.5. Hydrogen atom</a>
<li><a href="#org2e0adea">4.4. Pure Diffusion Monte Carlo (PDMC)</a></li>
<li><a href="#org1b76293">4.5. Hydrogen atom</a>
<ul>
<li><a href="#org4145b62">4.5.1. Exercise</a>
<li><a href="#orgc9c31bf">4.5.1. Exercise</a>
<ul>
<li><a href="#orgfd5af9d">4.5.1.1. Solution</a></li>
<li><a href="#org7cd701e">4.5.1.1. Solution</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#org74f6b7c">4.6. <span class="todo TODO">TODO</span> H<sub>2</sub></a></li>
<li><a href="#org7971e9d">4.6. <span class="todo TODO">TODO</span> H<sub>2</sub></a></li>
</ul>
</li>
<li><a href="#org1b7a228">5. <span class="todo TODO">TODO</span> <code>[0/3]</code> Last things to do</a></li>
<li><a href="#orge8fb145">6. Schedule</a></li>
<li><a href="#orga5ca7a1">5. <span class="todo TODO">TODO</span> <code>[0/3]</code> Last things to do</a></li>
<li><a href="#org2ca50b9">6. Schedule</a></li>
</ul>
</div>
</div>
<div id="outline-container-org6cc7181" class="outline-2">
<h2 id="org6cc7181"><span class="section-number-2">1</span> Introduction</h2>
<div id="outline-container-orgf5e741a" class="outline-2">
<h2 id="orgf5e741a"><span class="section-number-2">1</span> Introduction</h2>
<div class="outline-text-2" id="text-1">
<p>
This website contains the QMC tutorial of the 2021 LTTC winter school
@ -496,7 +496,7 @@ starting from an approximate wave function.
</p>
<p>
Code examples will be given in Python and Fortran. You can use
Code examples will be given in Python3 and Fortran. You can use
whatever language you prefer to write the programs.
</p>
@ -514,8 +514,8 @@ coordinates, etc).
</p>
</div>
<div id="outline-container-org5afd847" class="outline-3">
<h3 id="org5afd847"><span class="section-number-3">1.1</span> Energy and local energy</h3>
<div id="outline-container-org12bc49f" class="outline-3">
<h3 id="org12bc49f"><span class="section-number-3">1.1</span> Energy and local energy</h3>
<div class="outline-text-3" id="text-1-1">
<p>
For a given system with Hamiltonian \(\hat{H}\) and wave function \(\Psi\), we define the local energy as
@ -598,8 +598,8 @@ energy computed over these configurations:
</div>
</div>
<div id="outline-container-org2ec7e1b" class="outline-2">
<h2 id="org2ec7e1b"><span class="section-number-2">2</span> Numerical evaluation of the energy of the hydrogen atom</h2>
<div id="outline-container-orgd6dc021" class="outline-2">
<h2 id="orgd6dc021"><span class="section-number-2">2</span> Numerical evaluation of the energy of the hydrogen atom</h2>
<div class="outline-text-2" id="text-2">
<p>
In this section, we consider the hydrogen atom with the following
@ -628,8 +628,8 @@ To do that, we will compute the local energy and check whether it is constant.
</p>
</div>
<div id="outline-container-orgfcc8aee" class="outline-3">
<h3 id="orgfcc8aee"><span class="section-number-3">2.1</span> Local energy</h3>
<div id="outline-container-org0c68e1b" class="outline-3">
<h3 id="org0c68e1b"><span class="section-number-3">2.1</span> Local energy</h3>
<div class="outline-text-3" id="text-2-1">
<p>
You will now program all quantities needed to compute the local energy of the H atom for the given wave function.
@ -656,8 +656,8 @@ to catch the error.
</div>
</div>
<div id="outline-container-org35672c8" class="outline-4">
<h4 id="org35672c8"><span class="section-number-4">2.1.1</span> Exercise 1</h4>
<div id="outline-container-orga7198b0" class="outline-4">
<h4 id="orga7198b0"><span class="section-number-4">2.1.1</span> Exercise 1</h4>
<div class="outline-text-4" id="text-2-1-1">
<div class="exercise">
<p>
@ -679,7 +679,8 @@ and returns the potential.
<b>Python</b>
</p>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">potential</span>(r):
# <span style="color: #b22222;">TODO</span>
@ -701,14 +702,15 @@ and returns the potential.
</div>
</div>
<div id="outline-container-org225c317" class="outline-5">
<h5 id="org225c317"><span class="section-number-5">2.1.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-orgbc1bccd" class="outline-5">
<h5 id="orgbc1bccd"><span class="section-number-5">2.1.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-1-1">
<p>
<b>Python</b>
</p>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">potential</span>(r):
<span style="color: #a0522d;">distance</span> = np.sqrt(np.dot(r,r))
@ -742,8 +744,8 @@ and returns the potential.
</div>
</div>
<div id="outline-container-orgd36eef4" class="outline-4">
<h4 id="orgd36eef4"><span class="section-number-4">2.1.2</span> Exercise 2</h4>
<div id="outline-container-org259c34d" class="outline-4">
<h4 id="org259c34d"><span class="section-number-4">2.1.2</span> Exercise 2</h4>
<div class="outline-text-4" id="text-2-1-2">
<div class="exercise">
<p>
@ -778,8 +780,8 @@ input arguments, and returns a scalar.
</div>
</div>
<div id="outline-container-orgffb5984" class="outline-5">
<h5 id="orgffb5984"><span class="section-number-5">2.1.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-orgc12abfd" class="outline-5">
<h5 id="orgc12abfd"><span class="section-number-5">2.1.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-2-1">
<p>
<b>Python</b>
@ -806,8 +808,8 @@ input arguments, and returns a scalar.
</div>
</div>
<div id="outline-container-orgabefeb9" class="outline-4">
<h4 id="orgabefeb9"><span class="section-number-4">2.1.3</span> Exercise 3</h4>
<div id="outline-container-orga2c7fc2" class="outline-4">
<h4 id="orga2c7fc2"><span class="section-number-4">2.1.3</span> Exercise 3</h4>
<div class="outline-text-4" id="text-2-1-3">
<div class="exercise">
<p>
@ -827,7 +829,7 @@ We differentiate \(\Psi\) with respect to \(x\):
</p>
<p>
\[\Psi(\mathbf{r}) = \exp(-a\,|\mathbf{r}|) \]
\[ \Psi(\mathbf{r}) = \exp(-a\,|\mathbf{r}|) \]
\[\frac{\partial \Psi}{\partial x}
= \frac{\partial \Psi}{\partial |\mathbf{r}|} \frac{\partial |\mathbf{r}|}{\partial x}
= - \frac{a\,x}{|\mathbf{r}|} \Psi(\mathbf{r}) \]
@ -888,8 +890,8 @@ Therefore, the local kinetic energy is
</div>
</div>
<div id="outline-container-org3119096" class="outline-5">
<h5 id="org3119096"><span class="section-number-5">2.1.3.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org5929583" class="outline-5">
<h5 id="org5929583"><span class="section-number-5">2.1.3.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-3-1">
<p>
<b>Python</b>
@ -930,8 +932,8 @@ Therefore, the local kinetic energy is
</div>
</div>
<div id="outline-container-orge6a9288" class="outline-4">
<h4 id="orge6a9288"><span class="section-number-4">2.1.4</span> Exercise 4</h4>
<div id="outline-container-orgab6a45d" class="outline-4">
<h4 id="orgab6a45d"><span class="section-number-4">2.1.4</span> Exercise 4</h4>
<div class="outline-text-4" id="text-2-1-4">
<div class="exercise">
<p>
@ -990,8 +992,8 @@ are calling is yours.
</div>
</div>
<div id="outline-container-org89a050a" class="outline-5">
<h5 id="org89a050a"><span class="section-number-5">2.1.4.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org47942e7" class="outline-5">
<h5 id="org47942e7"><span class="section-number-5">2.1.4.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-4-1">
<p>
<b>Python</b>
@ -1022,8 +1024,8 @@ are calling is yours.
</div>
</div>
<div id="outline-container-org90a766f" class="outline-4">
<h4 id="org90a766f"><span class="section-number-4">2.1.5</span> Exercise 5</h4>
<div id="outline-container-org9de3fc5" class="outline-4">
<h4 id="org9de3fc5"><span class="section-number-4">2.1.5</span> Exercise 5</h4>
<div class="outline-text-4" id="text-2-1-5">
<div class="exercise">
<p>
@ -1033,8 +1035,8 @@ Find the theoretical value of \(a\) for which \(\Psi\) is an eigenfunction of \(
</div>
</div>
<div id="outline-container-org1669e04" class="outline-5">
<h5 id="org1669e04"><span class="section-number-5">2.1.5.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org19975c9" class="outline-5">
<h5 id="org19975c9"><span class="section-number-5">2.1.5.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-5-1">
\begin{eqnarray*}
E &=& \frac{\hat{H} \Psi}{\Psi} = - \frac{1}{2} \frac{\Delta \Psi}{\Psi} -
@ -1054,8 +1056,8 @@ equal to -0.5 atomic units.
</div>
</div>
<div id="outline-container-orgc481fb4" class="outline-3">
<h3 id="orgc481fb4"><span class="section-number-3">2.2</span> Plot of the local energy along the \(x\) axis</h3>
<div id="outline-container-org96fee99" class="outline-3">
<h3 id="org96fee99"><span class="section-number-3">2.2</span> Plot of the local energy along the \(x\) axis</h3>
<div class="outline-text-3" id="text-2-2">
<p>
The program you will write in this section will be written in
@ -1068,7 +1070,9 @@ It will use the functions previously defined.
In Python, you should put at the beginning of the file
</p>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc
</pre>
</div>
<p>
@ -1084,8 +1088,8 @@ In Fortran, you will need to compile all the source files together:
</div>
</div>
<div id="outline-container-org8a4f299" class="outline-4">
<h4 id="org8a4f299"><span class="section-number-4">2.2.1</span> Exercise</h4>
<div id="outline-container-orgb86a7fc" class="outline-4">
<h4 id="orgb86a7fc"><span class="section-number-4">2.2.1</span> Exercise</h4>
<div class="outline-text-4" id="text-2-2-1">
<div class="exercise">
<p>
@ -1111,7 +1115,9 @@ choose a grid which does not contain the origin to avoid numerical issues.
<b>Python</b>
</p>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">import</span> matplotlib.pyplot <span style="color: #a020f0;">as</span> plt
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc
@ -1177,14 +1183,16 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
</div>
</div>
<div id="outline-container-org5f96d93" class="outline-5">
<h5 id="org5f96d93"><span class="section-number-5">2.2.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org53da663" class="outline-5">
<h5 id="org53da663"><span class="section-number-5">2.2.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-2-1-1">
<p>
<b>Python</b>
</p>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">import</span> matplotlib.pyplot <span style="color: #a020f0;">as</span> plt
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc
@ -1253,8 +1261,8 @@ plt.savefig(<span style="color: #8b2252;">"plot_py.png"</span>)
</div>
</div>
<div id="outline-container-orgbcc283c" class="outline-3">
<h3 id="orgbcc283c"><span class="section-number-3">2.3</span> Numerical estimation of the energy</h3>
<div id="outline-container-orgedc6dec" class="outline-3">
<h3 id="orgedc6dec"><span class="section-number-3">2.3</span> Numerical estimation of the energy</h3>
<div class="outline-text-3" id="text-2-3">
<p>
If the space is discretized in small volume elements \(\mathbf{r}_i\)
@ -1267,7 +1275,7 @@ multiplied by the volume element:
<p>
\[
\langle E \rangle_{\Psi^2} \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta \mathbf{r}
w_i = \left|\Psi(\mathbf{r}_i)\right|^2 \delta \mathbf{r}
\]
</p>
@ -1284,8 +1292,8 @@ The energy is biased because:
</div>
<div id="outline-container-org5506022" class="outline-4">
<h4 id="org5506022"><span class="section-number-4">2.3.1</span> Exercise</h4>
<div id="outline-container-org86cee65" class="outline-4">
<h4 id="org86cee65"><span class="section-number-4">2.3.1</span> Exercise</h4>
<div class="outline-text-4" id="text-2-3-1">
<div class="exercise">
<p>
@ -1300,7 +1308,9 @@ Compute a numerical estimate of the energy using a grid of
<b>Python</b>
</p>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc, psi
<span style="color: #a0522d;">interval</span> = np.linspace(-5,5,num=50)
@ -1354,14 +1364,16 @@ To compile the Fortran and run it:
</div>
</div>
<div id="outline-container-org74db5d8" class="outline-5">
<h5 id="org74db5d8"><span class="section-number-5">2.3.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org86e5e11" class="outline-5">
<h5 id="org86e5e11"><span class="section-number-5">2.3.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-3-1-1">
<p>
<b>Python</b>
</p>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc, psi
<span style="color: #a0522d;">interval</span> = np.linspace(-5,5,num=50)
@ -1470,8 +1482,8 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002
</div>
</div>
<div id="outline-container-org1ceafe1" class="outline-3">
<h3 id="org1ceafe1"><span class="section-number-3">2.4</span> Variance of the local energy</h3>
<div id="outline-container-org93b4d4e" class="outline-3">
<h3 id="org93b4d4e"><span class="section-number-3">2.4</span> Variance of the local energy</h3>
<div class="outline-text-3" id="text-2-4">
<p>
The variance of the local energy is a functional of \(\Psi\)
@ -1498,8 +1510,8 @@ energy can be used as a measure of the quality of a wave function.
</p>
</div>
<div id="outline-container-orge85aa1c" class="outline-4">
<h4 id="orge85aa1c"><span class="section-number-4">2.4.1</span> Exercise (optional)</h4>
<div id="outline-container-org6c55698" class="outline-4">
<h4 id="org6c55698"><span class="section-number-4">2.4.1</span> Exercise (optional)</h4>
<div class="outline-text-4" id="text-2-4-1">
<div class="exercise">
<p>
@ -1510,8 +1522,8 @@ Prove that :
</div>
</div>
<div id="outline-container-org0940ecc" class="outline-5">
<h5 id="org0940ecc"><span class="section-number-5">2.4.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org87a6e8b" class="outline-5">
<h5 id="org87a6e8b"><span class="section-number-5">2.4.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-4-1-1">
<p>
\(\bar{E} = \langle E \rangle\) is a constant, so \(\langle \bar{E}
@ -1530,8 +1542,8 @@ Prove that :
</div>
</div>
</div>
<div id="outline-container-orgb488446" class="outline-4">
<h4 id="orgb488446"><span class="section-number-4">2.4.2</span> Exercise</h4>
<div id="outline-container-org535ef1c" class="outline-4">
<h4 id="org535ef1c"><span class="section-number-4">2.4.2</span> Exercise</h4>
<div class="outline-text-4" id="text-2-4-2">
<div class="exercise">
<p>
@ -1547,7 +1559,9 @@ a grid of \(50\times50\times50\) points in the range \((-5,-5,-5) \le
<b>Python</b>
</p>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np <span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc, psi
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np <span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc, psi
<span style="color: #a0522d;">interval</span> = np.linspace(-5,5,num=50)
@ -1605,14 +1619,16 @@ To compile and run:
</div>
</div>
<div id="outline-container-org5d375ab" class="outline-5">
<h5 id="org5d375ab"><span class="section-number-5">2.4.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org1c2caec" class="outline-5">
<h5 id="org1c2caec"><span class="section-number-5">2.4.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-4-2-1">
<p>
<b>Python</b>
</p>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc, psi
<span style="color: #a0522d;">interval</span> = np.linspace(-5,5,num=50)
@ -1743,8 +1759,8 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814
</div>
</div>
<div id="outline-container-org85e47f4" class="outline-2">
<h2 id="org85e47f4"><span class="section-number-2">3</span> Variational Monte Carlo</h2>
<div id="outline-container-orgff5fcc8" class="outline-2">
<h2 id="orgff5fcc8"><span class="section-number-2">3</span> Variational Monte Carlo</h2>
<div class="outline-text-2" id="text-3">
<p>
Numerical integration with deterministic methods is very efficient
@ -1754,14 +1770,14 @@ on a grid, it is usually more efficient to use Monte Carlo sampling.
</p>
<p>
Moreover, Monte Carlo sampling will alow us to remove the bias due
Moreover, Monte Carlo sampling will allow us to remove the bias due
to the discretization of space, and compute a statistical confidence
interval.
</p>
</div>
<div id="outline-container-org17350f1" class="outline-3">
<h3 id="org17350f1"><span class="section-number-3">3.1</span> Computation of the statistical error</h3>
<div id="outline-container-orgf13789e" class="outline-3">
<h3 id="orgf13789e"><span class="section-number-3">3.1</span> Computation of the statistical error</h3>
<div class="outline-text-3" id="text-3-1">
<p>
To compute the statistical error, you need to perform \(M\)
@ -1801,8 +1817,8 @@ And the confidence interval is given by
</p>
</div>
<div id="outline-container-org97a29b6" class="outline-4">
<h4 id="org97a29b6"><span class="section-number-4">3.1.1</span> Exercise</h4>
<div id="outline-container-org67f94e9" class="outline-4">
<h4 id="org67f94e9"><span class="section-number-4">3.1.1</span> Exercise</h4>
<div class="outline-text-4" id="text-3-1-1">
<div class="exercise">
<p>
@ -1816,7 +1832,9 @@ input array.
<b>Python</b>
</p>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> math <span style="color: #a020f0;">import</span> sqrt
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> math <span style="color: #a020f0;">import</span> sqrt
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">ave_error</span>(arr):
#<span style="color: #b22222;">TODO</span>
<span style="color: #a020f0;">return</span> (average, error)
@ -1840,14 +1858,16 @@ input array.
</div>
</div>
<div id="outline-container-orga749707" class="outline-5">
<h5 id="orga749707"><span class="section-number-5">3.1.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-orgb5c6b18" class="outline-5">
<h5 id="orgb5c6b18"><span class="section-number-5">3.1.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-3-1-1-1">
<p>
<b>Python</b>
</p>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> math <span style="color: #a020f0;">import</span> sqrt
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> math <span style="color: #a020f0;">import</span> sqrt
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">ave_error</span>(arr):
<span style="color: #a0522d;">M</span> = <span style="color: #483d8b;">len</span>(arr)
<span style="color: #a020f0;">assert</span>(M&gt;0)
@ -1900,8 +1920,8 @@ input array.
</div>
</div>
<div id="outline-container-orgd721f86" class="outline-3">
<h3 id="orgd721f86"><span class="section-number-3">3.2</span> Uniform sampling in the box</h3>
<div id="outline-container-org086611c" class="outline-3">
<h3 id="org086611c"><span class="section-number-3">3.2</span> Uniform sampling in the box</h3>
<div class="outline-text-3" id="text-3-2">
<p>
We will now perform our first Monte Carlo calculation to compute the
@ -1943,9 +1963,9 @@ One Monte Carlo run will consist of \(N_{\rm MC}\) Monte Carlo iterations. At ev
<ul class="org-ul">
<li>Draw a random point \(\mathbf{r}_i\) in the box \((-5,-5,-5) \le
(x,y,z) \le (5,5,5)\)</li>
<li>Compute \([\Psi(\mathbf{r}_i)]^2\) and accumulate the result in a
<li>Compute \(|\Psi(\mathbf{r}_i)|^2\) and accumulate the result in a
variable <code>normalization</code></li>
<li>Compute \([\Psi(\mathbf{r}_i)]^2 \times E_L(\mathbf{r}_i)\), and accumulate the
<li>Compute \(|\Psi(\mathbf{r}_i)|^2 \times E_L(\mathbf{r}_i)\), and accumulate the
result in a variable <code>energy</code></li>
</ul>
@ -1962,8 +1982,8 @@ compute the statistical error.
</p>
</div>
<div id="outline-container-org215979f" class="outline-4">
<h4 id="org215979f"><span class="section-number-4">3.2.1</span> Exercise</h4>
<div id="outline-container-orge2aa051" class="outline-4">
<h4 id="orge2aa051"><span class="section-number-4">3.2.1</span> Exercise</h4>
<div class="outline-text-4" id="text-3-2-1">
<div class="exercise">
<p>
@ -1987,7 +2007,9 @@ the <a href="https://numpy.org/doc/stable/reference/random/generated/numpy.rando
</div>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a, nmax):
@ -2063,14 +2085,16 @@ well as the index of the current step.
</div>
</div>
<div id="outline-container-orgbd3c736" class="outline-5">
<h5 id="orgbd3c736"><span class="section-number-5">3.2.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org010bc97" class="outline-5">
<h5 id="org010bc97"><span class="section-number-5">3.2.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-3-2-1-1">
<p>
<b>Python</b>
</p>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a, nmax):
@ -2178,8 +2202,8 @@ E = -0.49518773675598715 +/- 5.2391494923686175E-004
</div>
</div>
<div id="outline-container-orgf676c01" class="outline-3">
<h3 id="orgf676c01"><span class="section-number-3">3.3</span> Metropolis sampling with \(\Psi^2\)</h3>
<div id="outline-container-orga179058" class="outline-3">
<h3 id="orga179058"><span class="section-number-3">3.3</span> Metropolis sampling with \(\Psi^2\)</h3>
<div class="outline-text-3" id="text-3-3">
<p>
We will now use the square of the wave function to sample random
@ -2270,7 +2294,7 @@ The algorithm is summarized as follows:
<ol class="org-ol">
<li>Compute \(\Psi\) at a new position \(\mathbf{r'} = \mathbf{r}_n +
\delta L\, \mathbf{u}\)</li>
<li>Compute the ratio \(A = \frac{\left[\Psi(\mathbf{r'})\right]^2}{\left[\Psi(\mathbf{r}_{n})\right]^2}\)</li>
<li>Compute the ratio \(A = \frac{\left|\Psi(\mathbf{r'})\right|^2}{\left|\Psi(\mathbf{r}_{n})\right|^2}\)</li>
<li>Draw a uniform random number \(v \in [0,1]\)</li>
<li>if \(v \le A\), accept the move : set \(\mathbf{r}_{n+1} = \mathbf{r'}\)</li>
<li>else, reject the move : set \(\mathbf{r}_{n+1} = \mathbf{r}_n\)</li>
@ -2318,8 +2342,8 @@ the same variable later on to store a time step.
</div>
<div id="outline-container-orgc511dca" class="outline-4">
<h4 id="orgc511dca"><span class="section-number-4">3.3.1</span> Exercise</h4>
<div id="outline-container-orgf135ba9" class="outline-4">
<h4 id="orgf135ba9"><span class="section-number-4">3.3.1</span> Exercise</h4>
<div class="outline-text-4" id="text-3-3-1">
<div class="exercise">
<p>
@ -2342,7 +2366,9 @@ Can you observe a reduction in the statistical error?
<b>Python</b>
</p>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a,nmax,dt):
@ -2426,14 +2452,16 @@ Can you observe a reduction in the statistical error?
</div>
</div>
<div id="outline-container-org8b5ee4b" class="outline-5">
<h5 id="org8b5ee4b"><span class="section-number-5">3.3.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org4e7742d" class="outline-5">
<h5 id="org4e7742d"><span class="section-number-5">3.3.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-3-3-1-1">
<p>
<b>Python</b>
</p>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a,nmax,dt):
@ -2572,8 +2600,8 @@ A = 0.51695266666666673 +/- 4.0445505648997396E-004
</div>
</div>
<div id="outline-container-org542b847" class="outline-3">
<h3 id="org542b847"><span class="section-number-3">3.4</span> Gaussian random number generator</h3>
<div id="outline-container-orgebf484d" class="outline-3">
<h3 id="orgebf484d"><span class="section-number-3">3.4</span> Gaussian random number generator</h3>
<div class="outline-text-3" id="text-3-4">
<p>
To obtain Gaussian-distributed random numbers, you can apply the
@ -2636,8 +2664,8 @@ In Python, you can use the <a href="https://numpy.org/doc/stable/reference/rando
</div>
</div>
<div id="outline-container-orgce06b27" class="outline-3">
<h3 id="orgce06b27"><span class="section-number-3">3.5</span> Generalized Metropolis algorithm</h3>
<div id="outline-container-org6a38ece" class="outline-3">
<h3 id="org6a38ece"><span class="section-number-3">3.5</span> Generalized Metropolis algorithm</h3>
<div class="outline-text-3" id="text-3-5">
<p>
One can use more efficient numerical schemes to move the electrons by choosing a smarter expression for the transition probability.
@ -2764,8 +2792,8 @@ Evaluate \(\Psi\) and \(\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\) at th
</div>
<div id="outline-container-org6877da4" class="outline-4">
<h4 id="org6877da4"><span class="section-number-4">3.5.1</span> Exercise 1</h4>
<div id="outline-container-org8b0f271" class="outline-4">
<h4 id="org8b0f271"><span class="section-number-4">3.5.1</span> Exercise 1</h4>
<div class="outline-text-4" id="text-3-5-1">
<div class="exercise">
<p>
@ -2799,8 +2827,8 @@ Write a function to compute the drift vector \(\frac{\nabla \Psi(\mathbf{r})}{\P
</div>
</div>
<div id="outline-container-org9f0138a" class="outline-5">
<h5 id="org9f0138a"><span class="section-number-5">3.5.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-orgab98b8b" class="outline-5">
<h5 id="orgab98b8b"><span class="section-number-5">3.5.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-3-5-1-1">
<p>
<b>Python</b>
@ -2833,8 +2861,8 @@ Write a function to compute the drift vector \(\frac{\nabla \Psi(\mathbf{r})}{\P
</div>
</div>
<div id="outline-container-org36805af" class="outline-4">
<h4 id="org36805af"><span class="section-number-4">3.5.2</span> Exercise 2</h4>
<div id="outline-container-org3e2f697" class="outline-4">
<h4 id="org3e2f697"><span class="section-number-4">3.5.2</span> Exercise 2</h4>
<div class="outline-text-4" id="text-3-5-2">
<div class="exercise">
<p>
@ -2848,7 +2876,9 @@ Modify the previous program to introduce the drift-diffusion scheme.
<b>Python</b>
</p>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a,nmax,dt):
@ -2928,14 +2958,16 @@ Modify the previous program to introduce the drift-diffusion scheme.
</div>
</div>
<div id="outline-container-orgd6805a2" class="outline-5">
<h5 id="orgd6805a2"><span class="section-number-5">3.5.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org4a84a88" class="outline-5">
<h5 id="org4a84a88"><span class="section-number-5">3.5.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-3-5-2-1">
<p>
<b>Python</b>
</p>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a,nmax,dt):
@ -3115,12 +3147,12 @@ A = 0.78839866666666658 +/- 3.2503783452043152E-004
</div>
</div>
<div id="outline-container-org2d2753c" class="outline-2">
<h2 id="org2d2753c"><span class="section-number-2">4</span> Diffusion Monte Carlo&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h2>
<div id="outline-container-org84bf2a5" class="outline-2">
<h2 id="org84bf2a5"><span class="section-number-2">4</span> Diffusion Monte Carlo&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h2>
<div class="outline-text-2" id="text-4">
</div>
<div id="outline-container-org3f5bc99" class="outline-3">
<h3 id="org3f5bc99"><span class="section-number-3">4.1</span> Schrödinger equation in imaginary time</h3>
<div id="outline-container-org807669a" class="outline-3">
<h3 id="org807669a"><span class="section-number-3">4.1</span> Schrödinger equation in imaginary time</h3>
<div class="outline-text-3" id="text-4-1">
<p>
Consider the time-dependent Schrödinger equation:
@ -3188,8 +3220,8 @@ system.
</div>
</div>
<div id="outline-container-orgbd4d3c8" class="outline-3">
<h3 id="orgbd4d3c8"><span class="section-number-3">4.2</span> Diffusion and branching</h3>
<div id="outline-container-org9cf673b" class="outline-3">
<h3 id="org9cf673b"><span class="section-number-3">4.2</span> Diffusion and branching</h3>
<div class="outline-text-3" id="text-4-2">
<p>
The imaginary-time Schrödinger equation can be explicitly written in terms of the kinetic and
@ -3286,8 +3318,8 @@ Therefore, in both cases, you are dealing with a "Bosonic" ground state.
</div>
</div>
<div id="outline-container-org11ded29" class="outline-3">
<h3 id="org11ded29"><span class="section-number-3">4.3</span> Importance sampling</h3>
<div id="outline-container-org7419d64" class="outline-3">
<h3 id="org7419d64"><span class="section-number-3">4.3</span> Importance sampling</h3>
<div class="outline-text-3" id="text-4-3">
<p>
In a molecular system, the potential is far from being constant
@ -3383,8 +3415,8 @@ energies computed with the trial wave function.
</p>
</div>
<div id="outline-container-org5669f14" class="outline-4">
<h4 id="org5669f14"><span class="section-number-4">4.3.1</span> Appendix : Details of the Derivation</h4>
<div id="outline-container-org9ccfe0f" class="outline-4">
<h4 id="org9ccfe0f"><span class="section-number-4">4.3.1</span> Appendix : Details of the Derivation</h4>
<div class="outline-text-4" id="text-4-3-1">
<p>
\[
@ -3445,8 +3477,8 @@ Defining \(\Pi(\mathbf{r},t) = \psi(\mathbf{r},\tau)
</div>
</div>
<div id="outline-container-orged7a00f" class="outline-3">
<h3 id="orged7a00f"><span class="section-number-3">4.4</span> Pure Diffusion Monte Carlo (PDMC)</h3>
<div id="outline-container-org2e0adea" class="outline-3">
<h3 id="org2e0adea"><span class="section-number-3">4.4</span> Pure Diffusion Monte Carlo (PDMC)</h3>
<div class="outline-text-3" id="text-4-4">
<p>
Instead of having a variable number of particles to simulate the
@ -3527,13 +3559,13 @@ code, so this is what we will do in the next section.
</div>
</div>
<div id="outline-container-org0bcdcd6" class="outline-3">
<h3 id="org0bcdcd6"><span class="section-number-3">4.5</span> Hydrogen atom</h3>
<div id="outline-container-org1b76293" class="outline-3">
<h3 id="org1b76293"><span class="section-number-3">4.5</span> Hydrogen atom</h3>
<div class="outline-text-3" id="text-4-5">
</div>
<div id="outline-container-org4145b62" class="outline-4">
<h4 id="org4145b62"><span class="section-number-4">4.5.1</span> Exercise</h4>
<div id="outline-container-orgc9c31bf" class="outline-4">
<h4 id="orgc9c31bf"><span class="section-number-4">4.5.1</span> Exercise</h4>
<div class="outline-text-4" id="text-4-5-1">
<div class="exercise">
<p>
@ -3632,14 +3664,16 @@ energy of H for any value of \(a\).
</div>
</div>
<div id="outline-container-orgfd5af9d" class="outline-5">
<h5 id="orgfd5af9d"><span class="section-number-5">4.5.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org7cd701e" class="outline-5">
<h5 id="org7cd701e"><span class="section-number-5">4.5.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-4-5-1-1">
<p>
<b>Python</b>
</p>
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a, nmax, dt, tau, Eref):
@ -3849,8 +3883,8 @@ A = 0.98788066666666663 +/- 7.2889356133441110E-005
</div>
<div id="outline-container-org74f6b7c" class="outline-3">
<h3 id="org74f6b7c"><span class="section-number-3">4.6</span> <span class="todo TODO">TODO</span> H<sub>2</sub></h3>
<div id="outline-container-org7971e9d" class="outline-3">
<h3 id="org7971e9d"><span class="section-number-3">4.6</span> <span class="todo TODO">TODO</span> H<sub>2</sub></h3>
<div class="outline-text-3" id="text-4-6">
<p>
We will now consider the H<sub>2</sub> molecule in a minimal basis composed of the
@ -3871,8 +3905,8 @@ the nuclei.
</div>
<div id="outline-container-org1b7a228" class="outline-2">
<h2 id="org1b7a228"><span class="section-number-2">5</span> <span class="todo TODO">TODO</span> <code>[0/3]</code> Last things to do</h2>
<div id="outline-container-orga5ca7a1" class="outline-2">
<h2 id="orga5ca7a1"><span class="section-number-2">5</span> <span class="todo TODO">TODO</span> <code>[0/3]</code> Last things to do</h2>
<div class="outline-text-2" id="text-5">
<ul class="org-ul">
<li class="off"><code>[&#xa0;]</code> Give some hints of how much time is required for each section</li>
@ -3886,8 +3920,8 @@ the H\(_2\) molecule at $R$=1.4010 bohr. Answer: 0.17406 a.u.</li>
</div>
</div>
<div id="outline-container-orge8fb145" class="outline-2">
<h2 id="orge8fb145"><span class="section-number-2">6</span> Schedule</h2>
<div id="outline-container-org2ca50b9" class="outline-2">
<h2 id="org2ca50b9"><span class="section-number-2">6</span> Schedule</h2>
<div class="outline-text-2" id="text-6">
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
@ -3926,8 +3960,8 @@ the H\(_2\) molecule at $R$=1.4010 bohr. Answer: 0.17406 a.u.</li>
</tbody>
<tbody>
<tr>
<td class="org-left">&#xa0;</td>
<td class="org-right">&#xa0;</td>
<td class="org-left"><span class="timestamp-wrapper"><span class="timestamp">&lt;2021-02-04 Thu 14:00&gt;&#x2013;&lt;2021-02-04 Thu 14:10&gt;</span></span></td>
<td class="org-right">3.1</td>
</tr>
</tbody>
</table>
@ -3936,7 +3970,7 @@ the H\(_2\) molecule at $R$=1.4010 bohr. Answer: 0.17406 a.u.</li>
</div>
<div id="postamble" class="status">
<p class="author">Author: Anthony Scemama, Claudia Filippi</p>
<p class="date">Created: 2021-02-02 Tue 10:29</p>
<p class="date">Created: 2021-02-02 Tue 12:31</p>
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
</div>
</body>