1
0
mirror of https://github.com/TREX-CoE/qmc-lttc.git synced 2025-01-03 01:56:20 +01:00
This commit is contained in:
scemama 2021-02-02 12:31:24 +00:00
parent 52c4400031
commit 8df8ddbf26

View File

@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head> <head>
<!-- 2021-02-02 Tue 10:29 --> <!-- 2021-02-02 Tue 12:31 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" /> <meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Quantum Monte Carlo</title> <title>Quantum Monte Carlo</title>
@ -329,152 +329,152 @@ for the JavaScript code in this tag.
<h2>Table of Contents</h2> <h2>Table of Contents</h2>
<div id="text-table-of-contents"> <div id="text-table-of-contents">
<ul> <ul>
<li><a href="#org6cc7181">1. Introduction</a> <li><a href="#orgf5e741a">1. Introduction</a>
<ul> <ul>
<li><a href="#org5afd847">1.1. Energy and local energy</a></li> <li><a href="#org12bc49f">1.1. Energy and local energy</a></li>
</ul> </ul>
</li> </li>
<li><a href="#org2ec7e1b">2. Numerical evaluation of the energy of the hydrogen atom</a> <li><a href="#orgd6dc021">2. Numerical evaluation of the energy of the hydrogen atom</a>
<ul> <ul>
<li><a href="#orgfcc8aee">2.1. Local energy</a> <li><a href="#org0c68e1b">2.1. Local energy</a>
<ul> <ul>
<li><a href="#org35672c8">2.1.1. Exercise 1</a> <li><a href="#orga7198b0">2.1.1. Exercise 1</a>
<ul> <ul>
<li><a href="#org225c317">2.1.1.1. Solution</a></li> <li><a href="#orgbc1bccd">2.1.1.1. Solution</a></li>
</ul> </ul>
</li> </li>
<li><a href="#orgd36eef4">2.1.2. Exercise 2</a> <li><a href="#org259c34d">2.1.2. Exercise 2</a>
<ul> <ul>
<li><a href="#orgffb5984">2.1.2.1. Solution</a></li> <li><a href="#orgc12abfd">2.1.2.1. Solution</a></li>
</ul> </ul>
</li> </li>
<li><a href="#orgabefeb9">2.1.3. Exercise 3</a> <li><a href="#orga2c7fc2">2.1.3. Exercise 3</a>
<ul> <ul>
<li><a href="#org3119096">2.1.3.1. Solution</a></li> <li><a href="#org5929583">2.1.3.1. Solution</a></li>
</ul> </ul>
</li> </li>
<li><a href="#orge6a9288">2.1.4. Exercise 4</a> <li><a href="#orgab6a45d">2.1.4. Exercise 4</a>
<ul> <ul>
<li><a href="#org89a050a">2.1.4.1. Solution</a></li> <li><a href="#org47942e7">2.1.4.1. Solution</a></li>
</ul> </ul>
</li> </li>
<li><a href="#org90a766f">2.1.5. Exercise 5</a> <li><a href="#org9de3fc5">2.1.5. Exercise 5</a>
<ul> <ul>
<li><a href="#org1669e04">2.1.5.1. Solution</a></li> <li><a href="#org19975c9">2.1.5.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#orgc481fb4">2.2. Plot of the local energy along the \(x\) axis</a> <li><a href="#org96fee99">2.2. Plot of the local energy along the \(x\) axis</a>
<ul> <ul>
<li><a href="#org8a4f299">2.2.1. Exercise</a> <li><a href="#orgb86a7fc">2.2.1. Exercise</a>
<ul> <ul>
<li><a href="#org5f96d93">2.2.1.1. Solution</a></li> <li><a href="#org53da663">2.2.1.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#orgbcc283c">2.3. Numerical estimation of the energy</a> <li><a href="#orgedc6dec">2.3. Numerical estimation of the energy</a>
<ul> <ul>
<li><a href="#org5506022">2.3.1. Exercise</a> <li><a href="#org86cee65">2.3.1. Exercise</a>
<ul> <ul>
<li><a href="#org74db5d8">2.3.1.1. Solution</a></li> <li><a href="#org86e5e11">2.3.1.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#org1ceafe1">2.4. Variance of the local energy</a> <li><a href="#org93b4d4e">2.4. Variance of the local energy</a>
<ul> <ul>
<li><a href="#orge85aa1c">2.4.1. Exercise (optional)</a> <li><a href="#org6c55698">2.4.1. Exercise (optional)</a>
<ul> <ul>
<li><a href="#org0940ecc">2.4.1.1. Solution</a></li> <li><a href="#org87a6e8b">2.4.1.1. Solution</a></li>
</ul> </ul>
</li> </li>
<li><a href="#orgb488446">2.4.2. Exercise</a> <li><a href="#org535ef1c">2.4.2. Exercise</a>
<ul> <ul>
<li><a href="#org5d375ab">2.4.2.1. Solution</a></li> <li><a href="#org1c2caec">2.4.2.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#org85e47f4">3. Variational Monte Carlo</a> <li><a href="#orgff5fcc8">3. Variational Monte Carlo</a>
<ul> <ul>
<li><a href="#org17350f1">3.1. Computation of the statistical error</a> <li><a href="#orgf13789e">3.1. Computation of the statistical error</a>
<ul> <ul>
<li><a href="#org97a29b6">3.1.1. Exercise</a> <li><a href="#org67f94e9">3.1.1. Exercise</a>
<ul> <ul>
<li><a href="#orga749707">3.1.1.1. Solution</a></li> <li><a href="#orgb5c6b18">3.1.1.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#orgd721f86">3.2. Uniform sampling in the box</a> <li><a href="#org086611c">3.2. Uniform sampling in the box</a>
<ul> <ul>
<li><a href="#org215979f">3.2.1. Exercise</a> <li><a href="#orge2aa051">3.2.1. Exercise</a>
<ul> <ul>
<li><a href="#orgbd3c736">3.2.1.1. Solution</a></li> <li><a href="#org010bc97">3.2.1.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#orgf676c01">3.3. Metropolis sampling with \(\Psi^2\)</a> <li><a href="#orga179058">3.3. Metropolis sampling with \(\Psi^2\)</a>
<ul> <ul>
<li><a href="#orgc511dca">3.3.1. Exercise</a> <li><a href="#orgf135ba9">3.3.1. Exercise</a>
<ul> <ul>
<li><a href="#org8b5ee4b">3.3.1.1. Solution</a></li> <li><a href="#org4e7742d">3.3.1.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#org542b847">3.4. Gaussian random number generator</a></li> <li><a href="#orgebf484d">3.4. Gaussian random number generator</a></li>
<li><a href="#orgce06b27">3.5. Generalized Metropolis algorithm</a> <li><a href="#org6a38ece">3.5. Generalized Metropolis algorithm</a>
<ul> <ul>
<li><a href="#org6877da4">3.5.1. Exercise 1</a> <li><a href="#org8b0f271">3.5.1. Exercise 1</a>
<ul> <ul>
<li><a href="#org9f0138a">3.5.1.1. Solution</a></li> <li><a href="#orgab98b8b">3.5.1.1. Solution</a></li>
</ul> </ul>
</li> </li>
<li><a href="#org36805af">3.5.2. Exercise 2</a> <li><a href="#org3e2f697">3.5.2. Exercise 2</a>
<ul> <ul>
<li><a href="#orgd6805a2">3.5.2.1. Solution</a></li> <li><a href="#org4a84a88">3.5.2.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#org2d2753c">4. Diffusion Monte Carlo</a> <li><a href="#org84bf2a5">4. Diffusion Monte Carlo</a>
<ul> <ul>
<li><a href="#org3f5bc99">4.1. Schrödinger equation in imaginary time</a></li> <li><a href="#org807669a">4.1. Schrödinger equation in imaginary time</a></li>
<li><a href="#orgbd4d3c8">4.2. Diffusion and branching</a></li> <li><a href="#org9cf673b">4.2. Diffusion and branching</a></li>
<li><a href="#org11ded29">4.3. Importance sampling</a> <li><a href="#org7419d64">4.3. Importance sampling</a>
<ul> <ul>
<li><a href="#org5669f14">4.3.1. Appendix : Details of the Derivation</a></li> <li><a href="#org9ccfe0f">4.3.1. Appendix : Details of the Derivation</a></li>
</ul> </ul>
</li> </li>
<li><a href="#orged7a00f">4.4. Pure Diffusion Monte Carlo (PDMC)</a></li> <li><a href="#org2e0adea">4.4. Pure Diffusion Monte Carlo (PDMC)</a></li>
<li><a href="#org0bcdcd6">4.5. Hydrogen atom</a> <li><a href="#org1b76293">4.5. Hydrogen atom</a>
<ul> <ul>
<li><a href="#org4145b62">4.5.1. Exercise</a> <li><a href="#orgc9c31bf">4.5.1. Exercise</a>
<ul> <ul>
<li><a href="#orgfd5af9d">4.5.1.1. Solution</a></li> <li><a href="#org7cd701e">4.5.1.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#org74f6b7c">4.6. <span class="todo TODO">TODO</span> H<sub>2</sub></a></li> <li><a href="#org7971e9d">4.6. <span class="todo TODO">TODO</span> H<sub>2</sub></a></li>
</ul> </ul>
</li> </li>
<li><a href="#org1b7a228">5. <span class="todo TODO">TODO</span> <code>[0/3]</code> Last things to do</a></li> <li><a href="#orga5ca7a1">5. <span class="todo TODO">TODO</span> <code>[0/3]</code> Last things to do</a></li>
<li><a href="#orge8fb145">6. Schedule</a></li> <li><a href="#org2ca50b9">6. Schedule</a></li>
</ul> </ul>
</div> </div>
</div> </div>
<div id="outline-container-org6cc7181" class="outline-2"> <div id="outline-container-orgf5e741a" class="outline-2">
<h2 id="org6cc7181"><span class="section-number-2">1</span> Introduction</h2> <h2 id="orgf5e741a"><span class="section-number-2">1</span> Introduction</h2>
<div class="outline-text-2" id="text-1"> <div class="outline-text-2" id="text-1">
<p> <p>
This website contains the QMC tutorial of the 2021 LTTC winter school This website contains the QMC tutorial of the 2021 LTTC winter school
@ -496,7 +496,7 @@ starting from an approximate wave function.
</p> </p>
<p> <p>
Code examples will be given in Python and Fortran. You can use Code examples will be given in Python3 and Fortran. You can use
whatever language you prefer to write the programs. whatever language you prefer to write the programs.
</p> </p>
@ -514,8 +514,8 @@ coordinates, etc).
</p> </p>
</div> </div>
<div id="outline-container-org5afd847" class="outline-3"> <div id="outline-container-org12bc49f" class="outline-3">
<h3 id="org5afd847"><span class="section-number-3">1.1</span> Energy and local energy</h3> <h3 id="org12bc49f"><span class="section-number-3">1.1</span> Energy and local energy</h3>
<div class="outline-text-3" id="text-1-1"> <div class="outline-text-3" id="text-1-1">
<p> <p>
For a given system with Hamiltonian \(\hat{H}\) and wave function \(\Psi\), we define the local energy as For a given system with Hamiltonian \(\hat{H}\) and wave function \(\Psi\), we define the local energy as
@ -598,8 +598,8 @@ energy computed over these configurations:
</div> </div>
</div> </div>
<div id="outline-container-org2ec7e1b" class="outline-2"> <div id="outline-container-orgd6dc021" class="outline-2">
<h2 id="org2ec7e1b"><span class="section-number-2">2</span> Numerical evaluation of the energy of the hydrogen atom</h2> <h2 id="orgd6dc021"><span class="section-number-2">2</span> Numerical evaluation of the energy of the hydrogen atom</h2>
<div class="outline-text-2" id="text-2"> <div class="outline-text-2" id="text-2">
<p> <p>
In this section, we consider the hydrogen atom with the following In this section, we consider the hydrogen atom with the following
@ -628,8 +628,8 @@ To do that, we will compute the local energy and check whether it is constant.
</p> </p>
</div> </div>
<div id="outline-container-orgfcc8aee" class="outline-3"> <div id="outline-container-org0c68e1b" class="outline-3">
<h3 id="orgfcc8aee"><span class="section-number-3">2.1</span> Local energy</h3> <h3 id="org0c68e1b"><span class="section-number-3">2.1</span> Local energy</h3>
<div class="outline-text-3" id="text-2-1"> <div class="outline-text-3" id="text-2-1">
<p> <p>
You will now program all quantities needed to compute the local energy of the H atom for the given wave function. You will now program all quantities needed to compute the local energy of the H atom for the given wave function.
@ -656,8 +656,8 @@ to catch the error.
</div> </div>
</div> </div>
<div id="outline-container-org35672c8" class="outline-4"> <div id="outline-container-orga7198b0" class="outline-4">
<h4 id="org35672c8"><span class="section-number-4">2.1.1</span> Exercise 1</h4> <h4 id="orga7198b0"><span class="section-number-4">2.1.1</span> Exercise 1</h4>
<div class="outline-text-4" id="text-2-1-1"> <div class="outline-text-4" id="text-2-1-1">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -679,7 +679,8 @@ and returns the potential.
<b>Python</b> <b>Python</b>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">potential</span>(r): <span style="color: #a020f0;">def</span> <span style="color: #0000ff;">potential</span>(r):
# <span style="color: #b22222;">TODO</span> # <span style="color: #b22222;">TODO</span>
@ -701,14 +702,15 @@ and returns the potential.
</div> </div>
</div> </div>
<div id="outline-container-org225c317" class="outline-5"> <div id="outline-container-orgbc1bccd" class="outline-5">
<h5 id="org225c317"><span class="section-number-5">2.1.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="orgbc1bccd"><span class="section-number-5">2.1.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-1-1"> <div class="outline-text-5" id="text-2-1-1-1">
<p> <p>
<b>Python</b> <b>Python</b>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">potential</span>(r): <span style="color: #a020f0;">def</span> <span style="color: #0000ff;">potential</span>(r):
<span style="color: #a0522d;">distance</span> = np.sqrt(np.dot(r,r)) <span style="color: #a0522d;">distance</span> = np.sqrt(np.dot(r,r))
@ -742,8 +744,8 @@ and returns the potential.
</div> </div>
</div> </div>
<div id="outline-container-orgd36eef4" class="outline-4"> <div id="outline-container-org259c34d" class="outline-4">
<h4 id="orgd36eef4"><span class="section-number-4">2.1.2</span> Exercise 2</h4> <h4 id="org259c34d"><span class="section-number-4">2.1.2</span> Exercise 2</h4>
<div class="outline-text-4" id="text-2-1-2"> <div class="outline-text-4" id="text-2-1-2">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -778,8 +780,8 @@ input arguments, and returns a scalar.
</div> </div>
</div> </div>
<div id="outline-container-orgffb5984" class="outline-5"> <div id="outline-container-orgc12abfd" class="outline-5">
<h5 id="orgffb5984"><span class="section-number-5">2.1.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="orgc12abfd"><span class="section-number-5">2.1.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-2-1"> <div class="outline-text-5" id="text-2-1-2-1">
<p> <p>
<b>Python</b> <b>Python</b>
@ -806,8 +808,8 @@ input arguments, and returns a scalar.
</div> </div>
</div> </div>
<div id="outline-container-orgabefeb9" class="outline-4"> <div id="outline-container-orga2c7fc2" class="outline-4">
<h4 id="orgabefeb9"><span class="section-number-4">2.1.3</span> Exercise 3</h4> <h4 id="orga2c7fc2"><span class="section-number-4">2.1.3</span> Exercise 3</h4>
<div class="outline-text-4" id="text-2-1-3"> <div class="outline-text-4" id="text-2-1-3">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -827,7 +829,7 @@ We differentiate \(\Psi\) with respect to \(x\):
</p> </p>
<p> <p>
\[\Psi(\mathbf{r}) = \exp(-a\,|\mathbf{r}|) \] \[ \Psi(\mathbf{r}) = \exp(-a\,|\mathbf{r}|) \]
\[\frac{\partial \Psi}{\partial x} \[\frac{\partial \Psi}{\partial x}
= \frac{\partial \Psi}{\partial |\mathbf{r}|} \frac{\partial |\mathbf{r}|}{\partial x} = \frac{\partial \Psi}{\partial |\mathbf{r}|} \frac{\partial |\mathbf{r}|}{\partial x}
= - \frac{a\,x}{|\mathbf{r}|} \Psi(\mathbf{r}) \] = - \frac{a\,x}{|\mathbf{r}|} \Psi(\mathbf{r}) \]
@ -888,8 +890,8 @@ Therefore, the local kinetic energy is
</div> </div>
</div> </div>
<div id="outline-container-org3119096" class="outline-5"> <div id="outline-container-org5929583" class="outline-5">
<h5 id="org3119096"><span class="section-number-5">2.1.3.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org5929583"><span class="section-number-5">2.1.3.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-3-1"> <div class="outline-text-5" id="text-2-1-3-1">
<p> <p>
<b>Python</b> <b>Python</b>
@ -930,8 +932,8 @@ Therefore, the local kinetic energy is
</div> </div>
</div> </div>
<div id="outline-container-orge6a9288" class="outline-4"> <div id="outline-container-orgab6a45d" class="outline-4">
<h4 id="orge6a9288"><span class="section-number-4">2.1.4</span> Exercise 4</h4> <h4 id="orgab6a45d"><span class="section-number-4">2.1.4</span> Exercise 4</h4>
<div class="outline-text-4" id="text-2-1-4"> <div class="outline-text-4" id="text-2-1-4">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -990,8 +992,8 @@ are calling is yours.
</div> </div>
</div> </div>
<div id="outline-container-org89a050a" class="outline-5"> <div id="outline-container-org47942e7" class="outline-5">
<h5 id="org89a050a"><span class="section-number-5">2.1.4.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org47942e7"><span class="section-number-5">2.1.4.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-4-1"> <div class="outline-text-5" id="text-2-1-4-1">
<p> <p>
<b>Python</b> <b>Python</b>
@ -1022,8 +1024,8 @@ are calling is yours.
</div> </div>
</div> </div>
<div id="outline-container-org90a766f" class="outline-4"> <div id="outline-container-org9de3fc5" class="outline-4">
<h4 id="org90a766f"><span class="section-number-4">2.1.5</span> Exercise 5</h4> <h4 id="org9de3fc5"><span class="section-number-4">2.1.5</span> Exercise 5</h4>
<div class="outline-text-4" id="text-2-1-5"> <div class="outline-text-4" id="text-2-1-5">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -1033,8 +1035,8 @@ Find the theoretical value of \(a\) for which \(\Psi\) is an eigenfunction of \(
</div> </div>
</div> </div>
<div id="outline-container-org1669e04" class="outline-5"> <div id="outline-container-org19975c9" class="outline-5">
<h5 id="org1669e04"><span class="section-number-5">2.1.5.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org19975c9"><span class="section-number-5">2.1.5.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-5-1"> <div class="outline-text-5" id="text-2-1-5-1">
\begin{eqnarray*} \begin{eqnarray*}
E &=& \frac{\hat{H} \Psi}{\Psi} = - \frac{1}{2} \frac{\Delta \Psi}{\Psi} - E &=& \frac{\hat{H} \Psi}{\Psi} = - \frac{1}{2} \frac{\Delta \Psi}{\Psi} -
@ -1054,8 +1056,8 @@ equal to -0.5 atomic units.
</div> </div>
</div> </div>
<div id="outline-container-orgc481fb4" class="outline-3"> <div id="outline-container-org96fee99" class="outline-3">
<h3 id="orgc481fb4"><span class="section-number-3">2.2</span> Plot of the local energy along the \(x\) axis</h3> <h3 id="org96fee99"><span class="section-number-3">2.2</span> Plot of the local energy along the \(x\) axis</h3>
<div class="outline-text-3" id="text-2-2"> <div class="outline-text-3" id="text-2-2">
<p> <p>
The program you will write in this section will be written in The program you will write in this section will be written in
@ -1068,7 +1070,9 @@ It will use the functions previously defined.
In Python, you should put at the beginning of the file In Python, you should put at the beginning of the file
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc
</pre> </pre>
</div> </div>
<p> <p>
@ -1084,8 +1088,8 @@ In Fortran, you will need to compile all the source files together:
</div> </div>
</div> </div>
<div id="outline-container-org8a4f299" class="outline-4"> <div id="outline-container-orgb86a7fc" class="outline-4">
<h4 id="org8a4f299"><span class="section-number-4">2.2.1</span> Exercise</h4> <h4 id="orgb86a7fc"><span class="section-number-4">2.2.1</span> Exercise</h4>
<div class="outline-text-4" id="text-2-2-1"> <div class="outline-text-4" id="text-2-2-1">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -1111,7 +1115,9 @@ choose a grid which does not contain the origin to avoid numerical issues.
<b>Python</b> <b>Python</b>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">import</span> matplotlib.pyplot <span style="color: #a020f0;">as</span> plt <span style="color: #a020f0;">import</span> matplotlib.pyplot <span style="color: #a020f0;">as</span> plt
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc <span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc
@ -1177,14 +1183,16 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
</div> </div>
</div> </div>
<div id="outline-container-org5f96d93" class="outline-5"> <div id="outline-container-org53da663" class="outline-5">
<h5 id="org5f96d93"><span class="section-number-5">2.2.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org53da663"><span class="section-number-5">2.2.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-2-1-1"> <div class="outline-text-5" id="text-2-2-1-1">
<p> <p>
<b>Python</b> <b>Python</b>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">import</span> matplotlib.pyplot <span style="color: #a020f0;">as</span> plt <span style="color: #a020f0;">import</span> matplotlib.pyplot <span style="color: #a020f0;">as</span> plt
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc <span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc
@ -1253,8 +1261,8 @@ plt.savefig(<span style="color: #8b2252;">"plot_py.png"</span>)
</div> </div>
</div> </div>
<div id="outline-container-orgbcc283c" class="outline-3"> <div id="outline-container-orgedc6dec" class="outline-3">
<h3 id="orgbcc283c"><span class="section-number-3">2.3</span> Numerical estimation of the energy</h3> <h3 id="orgedc6dec"><span class="section-number-3">2.3</span> Numerical estimation of the energy</h3>
<div class="outline-text-3" id="text-2-3"> <div class="outline-text-3" id="text-2-3">
<p> <p>
If the space is discretized in small volume elements \(\mathbf{r}_i\) If the space is discretized in small volume elements \(\mathbf{r}_i\)
@ -1267,7 +1275,7 @@ multiplied by the volume element:
<p> <p>
\[ \[
\langle E \rangle_{\Psi^2} \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\; \langle E \rangle_{\Psi^2} \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta \mathbf{r} w_i = \left|\Psi(\mathbf{r}_i)\right|^2 \delta \mathbf{r}
\] \]
</p> </p>
@ -1284,8 +1292,8 @@ The energy is biased because:
</div> </div>
<div id="outline-container-org5506022" class="outline-4"> <div id="outline-container-org86cee65" class="outline-4">
<h4 id="org5506022"><span class="section-number-4">2.3.1</span> Exercise</h4> <h4 id="org86cee65"><span class="section-number-4">2.3.1</span> Exercise</h4>
<div class="outline-text-4" id="text-2-3-1"> <div class="outline-text-4" id="text-2-3-1">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -1300,7 +1308,9 @@ Compute a numerical estimate of the energy using a grid of
<b>Python</b> <b>Python</b>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc, psi <span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc, psi
<span style="color: #a0522d;">interval</span> = np.linspace(-5,5,num=50) <span style="color: #a0522d;">interval</span> = np.linspace(-5,5,num=50)
@ -1354,14 +1364,16 @@ To compile the Fortran and run it:
</div> </div>
</div> </div>
<div id="outline-container-org74db5d8" class="outline-5"> <div id="outline-container-org86e5e11" class="outline-5">
<h5 id="org74db5d8"><span class="section-number-5">2.3.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org86e5e11"><span class="section-number-5">2.3.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-3-1-1"> <div class="outline-text-5" id="text-2-3-1-1">
<p> <p>
<b>Python</b> <b>Python</b>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc, psi <span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc, psi
<span style="color: #a0522d;">interval</span> = np.linspace(-5,5,num=50) <span style="color: #a0522d;">interval</span> = np.linspace(-5,5,num=50)
@ -1470,8 +1482,8 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002
</div> </div>
</div> </div>
<div id="outline-container-org1ceafe1" class="outline-3"> <div id="outline-container-org93b4d4e" class="outline-3">
<h3 id="org1ceafe1"><span class="section-number-3">2.4</span> Variance of the local energy</h3> <h3 id="org93b4d4e"><span class="section-number-3">2.4</span> Variance of the local energy</h3>
<div class="outline-text-3" id="text-2-4"> <div class="outline-text-3" id="text-2-4">
<p> <p>
The variance of the local energy is a functional of \(\Psi\) The variance of the local energy is a functional of \(\Psi\)
@ -1498,8 +1510,8 @@ energy can be used as a measure of the quality of a wave function.
</p> </p>
</div> </div>
<div id="outline-container-orge85aa1c" class="outline-4"> <div id="outline-container-org6c55698" class="outline-4">
<h4 id="orge85aa1c"><span class="section-number-4">2.4.1</span> Exercise (optional)</h4> <h4 id="org6c55698"><span class="section-number-4">2.4.1</span> Exercise (optional)</h4>
<div class="outline-text-4" id="text-2-4-1"> <div class="outline-text-4" id="text-2-4-1">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -1510,8 +1522,8 @@ Prove that :
</div> </div>
</div> </div>
<div id="outline-container-org0940ecc" class="outline-5"> <div id="outline-container-org87a6e8b" class="outline-5">
<h5 id="org0940ecc"><span class="section-number-5">2.4.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org87a6e8b"><span class="section-number-5">2.4.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-4-1-1"> <div class="outline-text-5" id="text-2-4-1-1">
<p> <p>
\(\bar{E} = \langle E \rangle\) is a constant, so \(\langle \bar{E} \(\bar{E} = \langle E \rangle\) is a constant, so \(\langle \bar{E}
@ -1530,8 +1542,8 @@ Prove that :
</div> </div>
</div> </div>
</div> </div>
<div id="outline-container-orgb488446" class="outline-4"> <div id="outline-container-org535ef1c" class="outline-4">
<h4 id="orgb488446"><span class="section-number-4">2.4.2</span> Exercise</h4> <h4 id="org535ef1c"><span class="section-number-4">2.4.2</span> Exercise</h4>
<div class="outline-text-4" id="text-2-4-2"> <div class="outline-text-4" id="text-2-4-2">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -1547,7 +1559,9 @@ a grid of \(50\times50\times50\) points in the range \((-5,-5,-5) \le
<b>Python</b> <b>Python</b>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np <span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc, psi <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np <span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc, psi
<span style="color: #a0522d;">interval</span> = np.linspace(-5,5,num=50) <span style="color: #a0522d;">interval</span> = np.linspace(-5,5,num=50)
@ -1605,14 +1619,16 @@ To compile and run:
</div> </div>
</div> </div>
<div id="outline-container-org5d375ab" class="outline-5"> <div id="outline-container-org1c2caec" class="outline-5">
<h5 id="org5d375ab"><span class="section-number-5">2.4.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org1c2caec"><span class="section-number-5">2.4.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-4-2-1"> <div class="outline-text-5" id="text-2-4-2-1">
<p> <p>
<b>Python</b> <b>Python</b>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc, psi <span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc, psi
<span style="color: #a0522d;">interval</span> = np.linspace(-5,5,num=50) <span style="color: #a0522d;">interval</span> = np.linspace(-5,5,num=50)
@ -1743,8 +1759,8 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814
</div> </div>
</div> </div>
<div id="outline-container-org85e47f4" class="outline-2"> <div id="outline-container-orgff5fcc8" class="outline-2">
<h2 id="org85e47f4"><span class="section-number-2">3</span> Variational Monte Carlo</h2> <h2 id="orgff5fcc8"><span class="section-number-2">3</span> Variational Monte Carlo</h2>
<div class="outline-text-2" id="text-3"> <div class="outline-text-2" id="text-3">
<p> <p>
Numerical integration with deterministic methods is very efficient Numerical integration with deterministic methods is very efficient
@ -1754,14 +1770,14 @@ on a grid, it is usually more efficient to use Monte Carlo sampling.
</p> </p>
<p> <p>
Moreover, Monte Carlo sampling will alow us to remove the bias due Moreover, Monte Carlo sampling will allow us to remove the bias due
to the discretization of space, and compute a statistical confidence to the discretization of space, and compute a statistical confidence
interval. interval.
</p> </p>
</div> </div>
<div id="outline-container-org17350f1" class="outline-3"> <div id="outline-container-orgf13789e" class="outline-3">
<h3 id="org17350f1"><span class="section-number-3">3.1</span> Computation of the statistical error</h3> <h3 id="orgf13789e"><span class="section-number-3">3.1</span> Computation of the statistical error</h3>
<div class="outline-text-3" id="text-3-1"> <div class="outline-text-3" id="text-3-1">
<p> <p>
To compute the statistical error, you need to perform \(M\) To compute the statistical error, you need to perform \(M\)
@ -1801,8 +1817,8 @@ And the confidence interval is given by
</p> </p>
</div> </div>
<div id="outline-container-org97a29b6" class="outline-4"> <div id="outline-container-org67f94e9" class="outline-4">
<h4 id="org97a29b6"><span class="section-number-4">3.1.1</span> Exercise</h4> <h4 id="org67f94e9"><span class="section-number-4">3.1.1</span> Exercise</h4>
<div class="outline-text-4" id="text-3-1-1"> <div class="outline-text-4" id="text-3-1-1">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -1816,7 +1832,9 @@ input array.
<b>Python</b> <b>Python</b>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> math <span style="color: #a020f0;">import</span> sqrt <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> math <span style="color: #a020f0;">import</span> sqrt
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">ave_error</span>(arr): <span style="color: #a020f0;">def</span> <span style="color: #0000ff;">ave_error</span>(arr):
#<span style="color: #b22222;">TODO</span> #<span style="color: #b22222;">TODO</span>
<span style="color: #a020f0;">return</span> (average, error) <span style="color: #a020f0;">return</span> (average, error)
@ -1840,14 +1858,16 @@ input array.
</div> </div>
</div> </div>
<div id="outline-container-orga749707" class="outline-5"> <div id="outline-container-orgb5c6b18" class="outline-5">
<h5 id="orga749707"><span class="section-number-5">3.1.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="orgb5c6b18"><span class="section-number-5">3.1.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-3-1-1-1"> <div class="outline-text-5" id="text-3-1-1-1">
<p> <p>
<b>Python</b> <b>Python</b>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> math <span style="color: #a020f0;">import</span> sqrt <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> math <span style="color: #a020f0;">import</span> sqrt
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">ave_error</span>(arr): <span style="color: #a020f0;">def</span> <span style="color: #0000ff;">ave_error</span>(arr):
<span style="color: #a0522d;">M</span> = <span style="color: #483d8b;">len</span>(arr) <span style="color: #a0522d;">M</span> = <span style="color: #483d8b;">len</span>(arr)
<span style="color: #a020f0;">assert</span>(M&gt;0) <span style="color: #a020f0;">assert</span>(M&gt;0)
@ -1900,8 +1920,8 @@ input array.
</div> </div>
</div> </div>
<div id="outline-container-orgd721f86" class="outline-3"> <div id="outline-container-org086611c" class="outline-3">
<h3 id="orgd721f86"><span class="section-number-3">3.2</span> Uniform sampling in the box</h3> <h3 id="org086611c"><span class="section-number-3">3.2</span> Uniform sampling in the box</h3>
<div class="outline-text-3" id="text-3-2"> <div class="outline-text-3" id="text-3-2">
<p> <p>
We will now perform our first Monte Carlo calculation to compute the We will now perform our first Monte Carlo calculation to compute the
@ -1943,9 +1963,9 @@ One Monte Carlo run will consist of \(N_{\rm MC}\) Monte Carlo iterations. At ev
<ul class="org-ul"> <ul class="org-ul">
<li>Draw a random point \(\mathbf{r}_i\) in the box \((-5,-5,-5) \le <li>Draw a random point \(\mathbf{r}_i\) in the box \((-5,-5,-5) \le
(x,y,z) \le (5,5,5)\)</li> (x,y,z) \le (5,5,5)\)</li>
<li>Compute \([\Psi(\mathbf{r}_i)]^2\) and accumulate the result in a <li>Compute \(|\Psi(\mathbf{r}_i)|^2\) and accumulate the result in a
variable <code>normalization</code></li> variable <code>normalization</code></li>
<li>Compute \([\Psi(\mathbf{r}_i)]^2 \times E_L(\mathbf{r}_i)\), and accumulate the <li>Compute \(|\Psi(\mathbf{r}_i)|^2 \times E_L(\mathbf{r}_i)\), and accumulate the
result in a variable <code>energy</code></li> result in a variable <code>energy</code></li>
</ul> </ul>
@ -1962,8 +1982,8 @@ compute the statistical error.
</p> </p>
</div> </div>
<div id="outline-container-org215979f" class="outline-4"> <div id="outline-container-orge2aa051" class="outline-4">
<h4 id="org215979f"><span class="section-number-4">3.2.1</span> Exercise</h4> <h4 id="orge2aa051"><span class="section-number-4">3.2.1</span> Exercise</h4>
<div class="outline-text-4" id="text-3-2-1"> <div class="outline-text-4" id="text-3-2-1">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -1987,7 +2007,9 @@ the <a href="https://numpy.org/doc/stable/reference/random/generated/numpy.rando
</div> </div>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> * <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> * <span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a, nmax): <span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a, nmax):
@ -2063,14 +2085,16 @@ well as the index of the current step.
</div> </div>
</div> </div>
<div id="outline-container-orgbd3c736" class="outline-5"> <div id="outline-container-org010bc97" class="outline-5">
<h5 id="orgbd3c736"><span class="section-number-5">3.2.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org010bc97"><span class="section-number-5">3.2.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-3-2-1-1"> <div class="outline-text-5" id="text-3-2-1-1">
<p> <p>
<b>Python</b> <b>Python</b>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> * <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> * <span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a, nmax): <span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a, nmax):
@ -2178,8 +2202,8 @@ E = -0.49518773675598715 +/- 5.2391494923686175E-004
</div> </div>
</div> </div>
<div id="outline-container-orgf676c01" class="outline-3"> <div id="outline-container-orga179058" class="outline-3">
<h3 id="orgf676c01"><span class="section-number-3">3.3</span> Metropolis sampling with \(\Psi^2\)</h3> <h3 id="orga179058"><span class="section-number-3">3.3</span> Metropolis sampling with \(\Psi^2\)</h3>
<div class="outline-text-3" id="text-3-3"> <div class="outline-text-3" id="text-3-3">
<p> <p>
We will now use the square of the wave function to sample random We will now use the square of the wave function to sample random
@ -2270,7 +2294,7 @@ The algorithm is summarized as follows:
<ol class="org-ol"> <ol class="org-ol">
<li>Compute \(\Psi\) at a new position \(\mathbf{r'} = \mathbf{r}_n + <li>Compute \(\Psi\) at a new position \(\mathbf{r'} = \mathbf{r}_n +
\delta L\, \mathbf{u}\)</li> \delta L\, \mathbf{u}\)</li>
<li>Compute the ratio \(A = \frac{\left[\Psi(\mathbf{r'})\right]^2}{\left[\Psi(\mathbf{r}_{n})\right]^2}\)</li> <li>Compute the ratio \(A = \frac{\left|\Psi(\mathbf{r'})\right|^2}{\left|\Psi(\mathbf{r}_{n})\right|^2}\)</li>
<li>Draw a uniform random number \(v \in [0,1]\)</li> <li>Draw a uniform random number \(v \in [0,1]\)</li>
<li>if \(v \le A\), accept the move : set \(\mathbf{r}_{n+1} = \mathbf{r'}\)</li> <li>if \(v \le A\), accept the move : set \(\mathbf{r}_{n+1} = \mathbf{r'}\)</li>
<li>else, reject the move : set \(\mathbf{r}_{n+1} = \mathbf{r}_n\)</li> <li>else, reject the move : set \(\mathbf{r}_{n+1} = \mathbf{r}_n\)</li>
@ -2318,8 +2342,8 @@ the same variable later on to store a time step.
</div> </div>
<div id="outline-container-orgc511dca" class="outline-4"> <div id="outline-container-orgf135ba9" class="outline-4">
<h4 id="orgc511dca"><span class="section-number-4">3.3.1</span> Exercise</h4> <h4 id="orgf135ba9"><span class="section-number-4">3.3.1</span> Exercise</h4>
<div class="outline-text-4" id="text-3-3-1"> <div class="outline-text-4" id="text-3-3-1">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -2342,7 +2366,9 @@ Can you observe a reduction in the statistical error?
<b>Python</b> <b>Python</b>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> * <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> * <span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a,nmax,dt): <span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a,nmax,dt):
@ -2426,14 +2452,16 @@ Can you observe a reduction in the statistical error?
</div> </div>
</div> </div>
<div id="outline-container-org8b5ee4b" class="outline-5"> <div id="outline-container-org4e7742d" class="outline-5">
<h5 id="org8b5ee4b"><span class="section-number-5">3.3.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org4e7742d"><span class="section-number-5">3.3.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-3-3-1-1"> <div class="outline-text-5" id="text-3-3-1-1">
<p> <p>
<b>Python</b> <b>Python</b>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> * <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> * <span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a,nmax,dt): <span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a,nmax,dt):
@ -2572,8 +2600,8 @@ A = 0.51695266666666673 +/- 4.0445505648997396E-004
</div> </div>
</div> </div>
<div id="outline-container-org542b847" class="outline-3"> <div id="outline-container-orgebf484d" class="outline-3">
<h3 id="org542b847"><span class="section-number-3">3.4</span> Gaussian random number generator</h3> <h3 id="orgebf484d"><span class="section-number-3">3.4</span> Gaussian random number generator</h3>
<div class="outline-text-3" id="text-3-4"> <div class="outline-text-3" id="text-3-4">
<p> <p>
To obtain Gaussian-distributed random numbers, you can apply the To obtain Gaussian-distributed random numbers, you can apply the
@ -2636,8 +2664,8 @@ In Python, you can use the <a href="https://numpy.org/doc/stable/reference/rando
</div> </div>
</div> </div>
<div id="outline-container-orgce06b27" class="outline-3"> <div id="outline-container-org6a38ece" class="outline-3">
<h3 id="orgce06b27"><span class="section-number-3">3.5</span> Generalized Metropolis algorithm</h3> <h3 id="org6a38ece"><span class="section-number-3">3.5</span> Generalized Metropolis algorithm</h3>
<div class="outline-text-3" id="text-3-5"> <div class="outline-text-3" id="text-3-5">
<p> <p>
One can use more efficient numerical schemes to move the electrons by choosing a smarter expression for the transition probability. One can use more efficient numerical schemes to move the electrons by choosing a smarter expression for the transition probability.
@ -2764,8 +2792,8 @@ Evaluate \(\Psi\) and \(\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\) at th
</div> </div>
<div id="outline-container-org6877da4" class="outline-4"> <div id="outline-container-org8b0f271" class="outline-4">
<h4 id="org6877da4"><span class="section-number-4">3.5.1</span> Exercise 1</h4> <h4 id="org8b0f271"><span class="section-number-4">3.5.1</span> Exercise 1</h4>
<div class="outline-text-4" id="text-3-5-1"> <div class="outline-text-4" id="text-3-5-1">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -2799,8 +2827,8 @@ Write a function to compute the drift vector \(\frac{\nabla \Psi(\mathbf{r})}{\P
</div> </div>
</div> </div>
<div id="outline-container-org9f0138a" class="outline-5"> <div id="outline-container-orgab98b8b" class="outline-5">
<h5 id="org9f0138a"><span class="section-number-5">3.5.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="orgab98b8b"><span class="section-number-5">3.5.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-3-5-1-1"> <div class="outline-text-5" id="text-3-5-1-1">
<p> <p>
<b>Python</b> <b>Python</b>
@ -2833,8 +2861,8 @@ Write a function to compute the drift vector \(\frac{\nabla \Psi(\mathbf{r})}{\P
</div> </div>
</div> </div>
<div id="outline-container-org36805af" class="outline-4"> <div id="outline-container-org3e2f697" class="outline-4">
<h4 id="org36805af"><span class="section-number-4">3.5.2</span> Exercise 2</h4> <h4 id="org3e2f697"><span class="section-number-4">3.5.2</span> Exercise 2</h4>
<div class="outline-text-4" id="text-3-5-2"> <div class="outline-text-4" id="text-3-5-2">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -2848,7 +2876,9 @@ Modify the previous program to introduce the drift-diffusion scheme.
<b>Python</b> <b>Python</b>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> * <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> * <span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a,nmax,dt): <span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a,nmax,dt):
@ -2928,14 +2958,16 @@ Modify the previous program to introduce the drift-diffusion scheme.
</div> </div>
</div> </div>
<div id="outline-container-orgd6805a2" class="outline-5"> <div id="outline-container-org4a84a88" class="outline-5">
<h5 id="orgd6805a2"><span class="section-number-5">3.5.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org4a84a88"><span class="section-number-5">3.5.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-3-5-2-1"> <div class="outline-text-5" id="text-3-5-2-1">
<p> <p>
<b>Python</b> <b>Python</b>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> * <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> * <span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a,nmax,dt): <span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a,nmax,dt):
@ -3115,12 +3147,12 @@ A = 0.78839866666666658 +/- 3.2503783452043152E-004
</div> </div>
</div> </div>
<div id="outline-container-org2d2753c" class="outline-2"> <div id="outline-container-org84bf2a5" class="outline-2">
<h2 id="org2d2753c"><span class="section-number-2">4</span> Diffusion Monte Carlo&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h2> <h2 id="org84bf2a5"><span class="section-number-2">4</span> Diffusion Monte Carlo&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h2>
<div class="outline-text-2" id="text-4"> <div class="outline-text-2" id="text-4">
</div> </div>
<div id="outline-container-org3f5bc99" class="outline-3"> <div id="outline-container-org807669a" class="outline-3">
<h3 id="org3f5bc99"><span class="section-number-3">4.1</span> Schrödinger equation in imaginary time</h3> <h3 id="org807669a"><span class="section-number-3">4.1</span> Schrödinger equation in imaginary time</h3>
<div class="outline-text-3" id="text-4-1"> <div class="outline-text-3" id="text-4-1">
<p> <p>
Consider the time-dependent Schrödinger equation: Consider the time-dependent Schrödinger equation:
@ -3188,8 +3220,8 @@ system.
</div> </div>
</div> </div>
<div id="outline-container-orgbd4d3c8" class="outline-3"> <div id="outline-container-org9cf673b" class="outline-3">
<h3 id="orgbd4d3c8"><span class="section-number-3">4.2</span> Diffusion and branching</h3> <h3 id="org9cf673b"><span class="section-number-3">4.2</span> Diffusion and branching</h3>
<div class="outline-text-3" id="text-4-2"> <div class="outline-text-3" id="text-4-2">
<p> <p>
The imaginary-time Schrödinger equation can be explicitly written in terms of the kinetic and The imaginary-time Schrödinger equation can be explicitly written in terms of the kinetic and
@ -3286,8 +3318,8 @@ Therefore, in both cases, you are dealing with a "Bosonic" ground state.
</div> </div>
</div> </div>
<div id="outline-container-org11ded29" class="outline-3"> <div id="outline-container-org7419d64" class="outline-3">
<h3 id="org11ded29"><span class="section-number-3">4.3</span> Importance sampling</h3> <h3 id="org7419d64"><span class="section-number-3">4.3</span> Importance sampling</h3>
<div class="outline-text-3" id="text-4-3"> <div class="outline-text-3" id="text-4-3">
<p> <p>
In a molecular system, the potential is far from being constant In a molecular system, the potential is far from being constant
@ -3383,8 +3415,8 @@ energies computed with the trial wave function.
</p> </p>
</div> </div>
<div id="outline-container-org5669f14" class="outline-4"> <div id="outline-container-org9ccfe0f" class="outline-4">
<h4 id="org5669f14"><span class="section-number-4">4.3.1</span> Appendix : Details of the Derivation</h4> <h4 id="org9ccfe0f"><span class="section-number-4">4.3.1</span> Appendix : Details of the Derivation</h4>
<div class="outline-text-4" id="text-4-3-1"> <div class="outline-text-4" id="text-4-3-1">
<p> <p>
\[ \[
@ -3445,8 +3477,8 @@ Defining \(\Pi(\mathbf{r},t) = \psi(\mathbf{r},\tau)
</div> </div>
</div> </div>
<div id="outline-container-orged7a00f" class="outline-3"> <div id="outline-container-org2e0adea" class="outline-3">
<h3 id="orged7a00f"><span class="section-number-3">4.4</span> Pure Diffusion Monte Carlo (PDMC)</h3> <h3 id="org2e0adea"><span class="section-number-3">4.4</span> Pure Diffusion Monte Carlo (PDMC)</h3>
<div class="outline-text-3" id="text-4-4"> <div class="outline-text-3" id="text-4-4">
<p> <p>
Instead of having a variable number of particles to simulate the Instead of having a variable number of particles to simulate the
@ -3527,13 +3559,13 @@ code, so this is what we will do in the next section.
</div> </div>
</div> </div>
<div id="outline-container-org0bcdcd6" class="outline-3"> <div id="outline-container-org1b76293" class="outline-3">
<h3 id="org0bcdcd6"><span class="section-number-3">4.5</span> Hydrogen atom</h3> <h3 id="org1b76293"><span class="section-number-3">4.5</span> Hydrogen atom</h3>
<div class="outline-text-3" id="text-4-5"> <div class="outline-text-3" id="text-4-5">
</div> </div>
<div id="outline-container-org4145b62" class="outline-4"> <div id="outline-container-orgc9c31bf" class="outline-4">
<h4 id="org4145b62"><span class="section-number-4">4.5.1</span> Exercise</h4> <h4 id="orgc9c31bf"><span class="section-number-4">4.5.1</span> Exercise</h4>
<div class="outline-text-4" id="text-4-5-1"> <div class="outline-text-4" id="text-4-5-1">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -3632,14 +3664,16 @@ energy of H for any value of \(a\).
</div> </div>
</div> </div>
<div id="outline-container-orgfd5af9d" class="outline-5"> <div id="outline-container-org7cd701e" class="outline-5">
<h5 id="orgfd5af9d"><span class="section-number-5">4.5.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org7cd701e"><span class="section-number-5">4.5.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-4-5-1-1"> <div class="outline-text-5" id="text-4-5-1-1">
<p> <p>
<b>Python</b> <b>Python</b>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> * <pre class="src src-python">#<span style="color: #b22222;">!/usr/bin/env python3</span>
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> * <span style="color: #a020f0;">from</span> qmc_stats <span style="color: #a020f0;">import</span> *
<span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a, nmax, dt, tau, Eref): <span style="color: #a020f0;">def</span> <span style="color: #0000ff;">MonteCarlo</span>(a, nmax, dt, tau, Eref):
@ -3849,8 +3883,8 @@ A = 0.98788066666666663 +/- 7.2889356133441110E-005
</div> </div>
<div id="outline-container-org74f6b7c" class="outline-3"> <div id="outline-container-org7971e9d" class="outline-3">
<h3 id="org74f6b7c"><span class="section-number-3">4.6</span> <span class="todo TODO">TODO</span> H<sub>2</sub></h3> <h3 id="org7971e9d"><span class="section-number-3">4.6</span> <span class="todo TODO">TODO</span> H<sub>2</sub></h3>
<div class="outline-text-3" id="text-4-6"> <div class="outline-text-3" id="text-4-6">
<p> <p>
We will now consider the H<sub>2</sub> molecule in a minimal basis composed of the We will now consider the H<sub>2</sub> molecule in a minimal basis composed of the
@ -3871,8 +3905,8 @@ the nuclei.
</div> </div>
<div id="outline-container-org1b7a228" class="outline-2"> <div id="outline-container-orga5ca7a1" class="outline-2">
<h2 id="org1b7a228"><span class="section-number-2">5</span> <span class="todo TODO">TODO</span> <code>[0/3]</code> Last things to do</h2> <h2 id="orga5ca7a1"><span class="section-number-2">5</span> <span class="todo TODO">TODO</span> <code>[0/3]</code> Last things to do</h2>
<div class="outline-text-2" id="text-5"> <div class="outline-text-2" id="text-5">
<ul class="org-ul"> <ul class="org-ul">
<li class="off"><code>[&#xa0;]</code> Give some hints of how much time is required for each section</li> <li class="off"><code>[&#xa0;]</code> Give some hints of how much time is required for each section</li>
@ -3886,8 +3920,8 @@ the H\(_2\) molecule at $R$=1.4010 bohr. Answer: 0.17406 a.u.</li>
</div> </div>
</div> </div>
<div id="outline-container-orge8fb145" class="outline-2"> <div id="outline-container-org2ca50b9" class="outline-2">
<h2 id="orge8fb145"><span class="section-number-2">6</span> Schedule</h2> <h2 id="org2ca50b9"><span class="section-number-2">6</span> Schedule</h2>
<div class="outline-text-2" id="text-6"> <div class="outline-text-2" id="text-6">
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
@ -3926,8 +3960,8 @@ the H\(_2\) molecule at $R$=1.4010 bohr. Answer: 0.17406 a.u.</li>
</tbody> </tbody>
<tbody> <tbody>
<tr> <tr>
<td class="org-left">&#xa0;</td> <td class="org-left"><span class="timestamp-wrapper"><span class="timestamp">&lt;2021-02-04 Thu 14:00&gt;&#x2013;&lt;2021-02-04 Thu 14:10&gt;</span></span></td>
<td class="org-right">&#xa0;</td> <td class="org-right">3.1</td>
</tr> </tr>
</tbody> </tbody>
</table> </table>
@ -3936,7 +3970,7 @@ the H\(_2\) molecule at $R$=1.4010 bohr. Answer: 0.17406 a.u.</li>
</div> </div>
<div id="postamble" class="status"> <div id="postamble" class="status">
<p class="author">Author: Anthony Scemama, Claudia Filippi</p> <p class="author">Author: Anthony Scemama, Claudia Filippi</p>
<p class="date">Created: 2021-02-02 Tue 10:29</p> <p class="date">Created: 2021-02-02 Tue 12:31</p>
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p> <p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
</div> </div>
</body> </body>