1
0
mirror of https://github.com/TREX-CoE/qmc-lttc.git synced 2024-12-21 11:53:58 +01:00

Uniform sampling

This commit is contained in:
Anthony Scemama 2021-01-07 10:01:55 +01:00
parent 7d2310bc86
commit 8594cdfa39
8 changed files with 420 additions and 258 deletions

142
QMC.org
View File

@ -1,9 +1,7 @@
#+TITLE: Quantum Monte Carlo
#+AUTHOR: Anthony Scemama, Claudia Filippi
#+SETUPFILE: https://fniessen.github.io/org-html-themes/org/theme-readtheorg.setup
#+STARTUP: latexpreview
#+STARTUP: indent
* Introduction
@ -62,7 +60,7 @@ can be chosen.
:header-args:f90: :tangle hydrogen.f90
:END:
*** Write a function which computes the potential at $\mathbf{r}$
The function accepts q 3-dimensional vector =r= as input arguments
The function accepts a 3-dimensional vector =r= as input arguments
and returns the potential.
$\mathbf{r}=\sqrt{x^2 + y^2 + z^2})$, so
@ -70,13 +68,14 @@ can be chosen.
V(x,y,z) = -\frac{1}{\sqrt{x^2 + y^2 + z^2})$
$$
#+BEGIN_SRC python
#+BEGIN_SRC python :results none
import numpy as np
def potential(r):
return -1. / np.sqrt(np.dot(r,r))
#+END_SRC
#+BEGIN_SRC f90
double precision function potential(r)
implicit none
@ -89,7 +88,7 @@ end function potential
The function accepts a scalar =a= and a 3-dimensional vector =r= as
input arguments, and returns a scalar.
#+BEGIN_SRC python
#+BEGIN_SRC python :results none
def psi(a, r):
return np.exp(-a*np.sqrt(np.dot(r,r)))
#+END_SRC
@ -140,7 +139,7 @@ end function psi
-\frac{1}{2} \frac{\Delta \Psi}{\Psi} (x,y,z) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right)
$$
#+BEGIN_SRC python
#+BEGIN_SRC python :results none
def kinetic(a,r):
return -0.5 * (a**2 - (2.*a)/np.sqrt(np.dot(r,r)))
#+END_SRC
@ -162,7 +161,7 @@ end function kinetic
E_L(x,y,z) = -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (x,y,z) + V(x,y,z)
$$
#+BEGIN_SRC python
#+BEGIN_SRC python :results none
def e_loc(a,r):
return kinetic(a,r) + potential(r)
#+END_SRC
@ -181,14 +180,11 @@ end function e_loc
:header-args:python: :tangle plot_hydrogen.py
:header-args:f90: :tangle plot_hydrogen.f90
:END:
:LOGBOOK:
CLOCK: [2021-01-03 Sun 17:48]
:END:
For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the
local energy along the $x$ axis.
#+begin_src python
#+begin_src python :results output
import numpy as np
import matplotlib.pyplot as plt
@ -212,6 +208,8 @@ plt.legend()
plt.savefig("plot_py.png")
#+end_src
#+RESULTS:
[[./plot_py.png]]
@ -286,15 +284,14 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
& = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
\end{eqnarray}
If the space is discretized in small volume elements
$\delta x\, \delta y\, \delta z$, this last equation corresponds
to a weighted average of the local energy, where the weights are
the values of the square of the wave function at $(x,y,z)$
multiplied by the volume element:
If the space is discretized in small volume elements $\delta
\mathbf{r}$, this last equation corresponds to a weighted average of
the local energy, where the weights are the values of the square of
the wave function at $\mathbf{r}$ multiplied by the volume element:
$$
E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta x\, \delta y\, \delta z
w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta \mathbf{r}
$$
We now compute an numerical estimate of the energy in a grid of
@ -340,6 +337,7 @@ for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
: a = 1.5 E = -0.39242967082602226
: a = 2.0 E = -0.08086980667844901
#+begin_src f90
program energy_hydrogen
implicit none
@ -403,7 +401,7 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
:header-args:f90: :tangle variance_hydrogen.f90
:END:
The variance of the local energy measures the intensity of the
The variance of the local energy measures the magnitude of the
fluctuations of the local energy around the average. If the local
energy is constant (i.e. $\Psi$ is an eigenfunction of $\hat{H}$)
the variance is zero.
@ -413,7 +411,7 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
$$
Compute an numerical estimate of the variance of the local energy
Compute a numerical estimate of the variance of the local energy
in a grid of $50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$.
#+BEGIN_SRC python :results output :exports both
@ -545,13 +543,19 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
Instead of computing the average energy as a numerical integration
on a grid, we will do a Monte Carlo sampling, which is an extremely
efficient method to compute integrals in large dimensions.
efficient method to compute integrals when the number of dimensions is
large.
Moreover, a Monte Carlo sampling will alow us to remove the bias due
to the discretization of space, and compute a statistical confidence
interval.
** Computation of the statistical error
:PROPERTIES:
:header-args:python: :tangle qmc_stats.py
:header-args:f90: :tangle qmc_stats.f90
:END:
To compute the statistical error, you need to perform $M$
independent Monte Carlo calculations. You will obtain $M$ different
@ -579,7 +583,8 @@ $$
Write a function returning the average and statistical error of an
input array.
#+BEGIN_SRC python :results output
#+BEGIN_SRC python
from math import sqrt
def ave_error(arr):
M = len(arr)
assert (M>1)
@ -588,12 +593,33 @@ def ave_error(arr):
return (average, sqrt(variance/M))
#+END_SRC
#+RESULTS:
#+BEGIN_SRC f90
subroutine ave_error(x,n,ave,err)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: x(n)
double precision, intent(out) :: ave, err
double precision :: variance
if (n == 1) then
ave = x(1)
err = 0.d0
else
ave = sum(x(:)) / dble(n)
variance = sum( (x(:) - ave)**2 ) / dble(n-1)
err = dsqrt(variance/dble(n))
endif
end subroutine ave_error
#+END_SRC
** Uniform sampling in the box
:PROPERTIES:
:header-args:python: :tangle qmc_uniform.py
:header-args:f90: :tangle qmc_uniform.f90
:END:
Write a function to perform a Monte Carlo calculation of the
average energy. At every Monte Carlo step,
In this section we write a function to perform a Monte Carlo
calculation of the average energy.
At every Monte Carlo step:
- Draw 3 uniform random numbers in the interval $(-5,-5,-5) \le
(x,y,z) \le (5,5,5)$
@ -604,12 +630,16 @@ def ave_error(arr):
Once all the steps have been computed, return the average energy
computed on the Monte Carlo calculation.
Then, write a loop to perform 30 Monte Carlo runs, and compute the
average energy and the associated statistical error.
In the main program, write a loop to perform 30 Monte Carlo runs,
and compute the average energy and the associated statistical error.
Compute the energy of the wave function with $a=0.9$.
#+BEGIN_SRC python
#+BEGIN_SRC python :results output
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a, nmax):
E = 0.
N = 0.
@ -620,9 +650,7 @@ def MonteCarlo(a, nmax):
N += w
E += w * e_loc(a,r)
return E/N
#+END_SRC
#+BEGIN_SRC python
a = 0.9
nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)]
@ -631,7 +659,59 @@ print(f"E = {E} +/- {deltaE}")
#+END_SRC
#+RESULTS:
: E = -0.4952626284319677 +/- 0.0006877988969872546
: E = -0.4956255109300764 +/- 0.0007082875482711226
#+BEGIN_SRC f90
subroutine uniform_montecarlo(a,nmax,energy)
implicit none
double precision, intent(in) :: a
integer , intent(in) :: nmax
double precision, intent(out) :: energy
integer*8 :: istep
double precision :: norm, r(3), w
double precision, external :: e_loc, psi
energy = 0.d0
norm = 0.d0
do istep = 1,nmax
call random_number(r)
r(:) = -5.d0 + 10.d0*r(:)
w = psi(a,r)
w = w*w
norm = norm + w
energy = energy + w * e_loc(a,r)
end do
energy = energy / norm
end subroutine uniform_montecarlo
program qmc
implicit none
double precision, parameter :: a = 0.9
integer , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns)
double precision :: ave, err
do irun=1,nruns
call uniform_montecarlo(a,nmax,X(irun))
enddo
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
end program qmc
#+END_SRC
#+begin_src sh :results output :exports both
gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
./qmc_uniform
#+end_src
#+RESULTS:
: E = -0.49588321986667677 +/- 7.1758863546737969E-004
** Gaussian sampling
@ -655,7 +735,7 @@ print(f"E = {E} +/- {deltaE}")
$$
E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r})} \delta x\, \delta y\, \delta z
w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r}_i)} \delta \mathbf{r}
$$
#+BEGIN_SRC python

15
qmc_stats.f90 Normal file
View File

@ -0,0 +1,15 @@
subroutine ave_error(x,n,ave,err)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: x(n)
double precision, intent(out) :: ave, err
double precision :: variance
if (n == 1) then
ave = x(1)
err = 0.d0
else
ave = sum(x(:)) / dble(n)
variance = sum( (x(:) - ave)**2 ) / dble(n-1)
err = dsqrt(variance/dble(n))
endif
end subroutine ave_error

7
qmc_stats.py Normal file
View File

@ -0,0 +1,7 @@
from math import sqrt
def ave_error(arr):
M = len(arr)
assert (M>1)
average = sum(arr)/M
variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] )
return (average, sqrt(variance/M))

41
qmc_uniform.f90 Normal file
View File

@ -0,0 +1,41 @@
subroutine uniform_montecarlo(a,nmax,energy)
implicit none
double precision, intent(in) :: a
integer , intent(in) :: nmax
double precision, intent(out) :: energy
integer*8 :: istep
double precision :: norm, r(3), w
double precision, external :: e_loc, psi
energy = 0.d0
norm = 0.d0
do istep = 1,nmax
call random_number(r)
r(:) = -5.d0 + 10.d0*r(:)
w = psi(a,r)
w = w*w
norm = norm + w
energy = energy + w * e_loc(a,r)
end do
energy = energy / norm
end subroutine uniform_montecarlo
program qmc
implicit none
double precision, parameter :: a = 0.9
integer , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns)
double precision :: ave, err
do irun=1,nruns
call uniform_montecarlo(a,nmax,X(irun))
enddo
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
end program qmc

19
qmc_uniform.py Normal file
View File

@ -0,0 +1,19 @@
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a, nmax):
E = 0.
N = 0.
for istep in range(nmax):
r = np.random.uniform(-5., 5., (3))
w = psi(a,r)
w = w*w
N += w
E += w * e_loc(a,r)
return E/N
a = 0.9
nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")