diff --git a/QMC.org b/QMC.org index 40d0c44..d544561 100644 --- a/QMC.org +++ b/QMC.org @@ -60,7 +60,52 @@ All the quantities are expressed in /atomic units/ (energies, coordinates, etc). -* Numerical evaluation of the energy + ** Energy and local energy + + For a given system with Hamiltonian $\hat{H}$ and wave function $\Psi$, we define the local energy as + + $$ + E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}, + $$ + + where $\mathbf{r}$ denotes the 3N-dimensional electronic coordinates. + + The electronic energy of a system, $E$, can be rewritten in terms of the + local energy $E_L(\mathbf{r})$ as + + \begin{eqnarray*} + E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle} + = \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\ + & = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} + = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, E_L(\mathbf{r})\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} + \end{eqnarray*} + + For few dimensions, one can easily compute $E$ by evaluating the integrals on a grid but, for a high number of dimensions, one can resort to Monte Carlo techniques to compute $E$. + + To this aim, recall that the probabilistic /expected value/ of an arbitrary function $f(x)$ + with respect to a probability density function $p(x)$ is given by + + $$ \langle f \rangle_p = \int_{-\infty}^\infty p(x)\, f(x)\,dx, $$ + + where a probability density function $p(x)$ is non-negative + and integrates to one: + + $$ \int_{-\infty}^\infty p(x)\,dx = 1. $$ + + Similarly, we can view the the energy of a system, $E$, as the expected value of the local energy with respect to + a probability density $p(\mathbf{r}}$ defined in 3$N$ dimensions: + + $$ E = \int E_L(\mathbf{r}) p(\mathbf{r})\,d\mathbf{r}} \equiv \langle E_L \rangle_{\Psi^2}\,, $$ + + where the probability density is given by the square of the wave function: + + $$ p(\mathbf{r}) = \frac{|Psi(\mathbf{r}|^2){\int \left |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,. $$ + + If we can sample configurations $\{\mathbf{r}\}$ distributed as $p$, we can estimate $E$ as the average of the local energy computed over these configurations: + + $$ E \approx \frac{1}{M} \sum_{i=1}^M E_L(\mathbf{r}_i} \,. + + * Numerical evaluation of the energy of the hydrogen atoms In this section, we consider the hydrogen atom with the following wave function: @@ -78,40 +123,9 @@ To do that, we will compute the local energy, defined as - $$ - E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}, - $$ - + and check whether it is constant. - In general, the electronic energy of a system, $E$, can be rewritten as the expectation value of the - local energy $E(\mathbf{r})$ with respect to the 3N-dimensional - electron density given by the square of the wave function: - - \begin{eqnarray*} - E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle} - = \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\ - & = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} - = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, E_L(\mathbf{r})\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} - = \langle E_L \rangle_{\Psi^2}\,, - \end{eqnarray*} - where $\mathbf{r}$ is the vector of the 3N-dimensional electronic coordinates ($N=1$ for the hydrogen atom). - - For a small number of dimensions, one can compute $E$ by evaluating the integrals on a grid. However, - - The probabilistic /expected value/ of an arbitrary function $f(x)$ - with respect to a probability density function $p(x)$ is given by - - $$ \langle f \rangle_p = \int_{-\infty}^\infty p(x)\, f(x)\,dx, $$ - - where probability density function $p(x)$ is non-negative - and integrates to one: - - $$ \int_{-\infty}^\infty p(x)\,dx = 1. $$ - - - - ** Local energy :PROPERTIES: :header-args:python: :tangle hydrogen.py