mirror of
https://github.com/TREX-CoE/qmc-lttc.git
synced 2024-09-09 06:24:48 +02:00
more changes
This commit is contained in:
parent
490506964d
commit
76adcbddf2
80
QMC.org
80
QMC.org
@ -60,7 +60,52 @@
|
||||
All the quantities are expressed in /atomic units/ (energies,
|
||||
coordinates, etc).
|
||||
|
||||
* Numerical evaluation of the energy
|
||||
** Energy and local energy
|
||||
|
||||
For a given system with Hamiltonian $\hat{H}$ and wave function $\Psi$, we define the local energy as
|
||||
|
||||
$$
|
||||
E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})},
|
||||
$$
|
||||
|
||||
where $\mathbf{r}$ denotes the 3N-dimensional electronic coordinates.
|
||||
|
||||
The electronic energy of a system, $E$, can be rewritten in terms of the
|
||||
local energy $E_L(\mathbf{r})$ as
|
||||
|
||||
\begin{eqnarray*}
|
||||
E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle}
|
||||
= \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\
|
||||
& = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
|
||||
= \frac{\int \left[\Psi(\mathbf{r})\right]^2\, E_L(\mathbf{r})\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
|
||||
\end{eqnarray*}
|
||||
|
||||
For few dimensions, one can easily compute $E$ by evaluating the integrals on a grid but, for a high number of dimensions, one can resort to Monte Carlo techniques to compute $E$.
|
||||
|
||||
To this aim, recall that the probabilistic /expected value/ of an arbitrary function $f(x)$
|
||||
with respect to a probability density function $p(x)$ is given by
|
||||
|
||||
$$ \langle f \rangle_p = \int_{-\infty}^\infty p(x)\, f(x)\,dx, $$
|
||||
|
||||
where a probability density function $p(x)$ is non-negative
|
||||
and integrates to one:
|
||||
|
||||
$$ \int_{-\infty}^\infty p(x)\,dx = 1. $$
|
||||
|
||||
Similarly, we can view the the energy of a system, $E$, as the expected value of the local energy with respect to
|
||||
a probability density $p(\mathbf{r}}$ defined in 3$N$ dimensions:
|
||||
|
||||
$$ E = \int E_L(\mathbf{r}) p(\mathbf{r})\,d\mathbf{r}} \equiv \langle E_L \rangle_{\Psi^2}\,, $$
|
||||
|
||||
where the probability density is given by the square of the wave function:
|
||||
|
||||
$$ p(\mathbf{r}) = \frac{|Psi(\mathbf{r}|^2){\int \left |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,. $$
|
||||
|
||||
If we can sample configurations $\{\mathbf{r}\}$ distributed as $p$, we can estimate $E$ as the average of the local energy computed over these configurations:
|
||||
|
||||
$$ E \approx \frac{1}{M} \sum_{i=1}^M E_L(\mathbf{r}_i} \,.
|
||||
|
||||
* Numerical evaluation of the energy of the hydrogen atoms
|
||||
|
||||
In this section, we consider the hydrogen atom with the following
|
||||
wave function:
|
||||
@ -78,40 +123,9 @@
|
||||
|
||||
To do that, we will compute the local energy, defined as
|
||||
|
||||
$$
|
||||
E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})},
|
||||
$$
|
||||
|
||||
|
||||
and check whether it is constant.
|
||||
|
||||
In general, the electronic energy of a system, $E$, can be rewritten as the expectation value of the
|
||||
local energy $E(\mathbf{r})$ with respect to the 3N-dimensional
|
||||
electron density given by the square of the wave function:
|
||||
|
||||
\begin{eqnarray*}
|
||||
E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle}
|
||||
= \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\
|
||||
& = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
|
||||
= \frac{\int \left[\Psi(\mathbf{r})\right]^2\, E_L(\mathbf{r})\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
|
||||
= \langle E_L \rangle_{\Psi^2}\,,
|
||||
\end{eqnarray*}
|
||||
where $\mathbf{r}$ is the vector of the 3N-dimensional electronic coordinates ($N=1$ for the hydrogen atom).
|
||||
|
||||
For a small number of dimensions, one can compute $E$ by evaluating the integrals on a grid. However,
|
||||
|
||||
The probabilistic /expected value/ of an arbitrary function $f(x)$
|
||||
with respect to a probability density function $p(x)$ is given by
|
||||
|
||||
$$ \langle f \rangle_p = \int_{-\infty}^\infty p(x)\, f(x)\,dx, $$
|
||||
|
||||
where probability density function $p(x)$ is non-negative
|
||||
and integrates to one:
|
||||
|
||||
$$ \int_{-\infty}^\infty p(x)\,dx = 1. $$
|
||||
|
||||
|
||||
|
||||
|
||||
** Local energy
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle hydrogen.py
|
||||
|
Loading…
Reference in New Issue
Block a user