mirror of
https://github.com/TREX-CoE/qmc-lttc.git
synced 2024-12-21 11:53:58 +01:00
Update QMC.org
This commit is contained in:
parent
439fc5b5db
commit
7570947a5d
56
QMC.org
56
QMC.org
@ -99,7 +99,7 @@
|
||||
|
||||
where the probability density is given by the square of the wave function:
|
||||
|
||||
$$ P(\mathbf{r}) = \frac{|Psi(\mathbf{r}|^2)}{\int \left |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,. $$
|
||||
$$ P(\mathbf{r}) = \frac{|Psi(\mathbf{r}|^2)}{\int |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,. $$
|
||||
|
||||
If we can sample $N_{\rm MC}$ configurations $\{\mathbf{r}\}$ distributed as $p$, we can estimate $E$ as the average of the local energy computed over these configurations:
|
||||
|
||||
@ -763,7 +763,7 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
||||
*** Exercise (optional)
|
||||
#+begin_exercise
|
||||
Prove that :
|
||||
$$\left( \langle E - \langle E \rangle_{\Psi^2} \rangle_{\Psi^2} \right)^2 = \langle E^2 \rangle_{\Psi^2} - \langle E \rangle_{\Psi^2}^2 $$
|
||||
$$\langle \left( E - \langle E \rangle_{\Psi^2} \right)^2\rangle_{\Psi^2} = \langle E^2 \rangle_{\Psi^2} - \langle E \rangle_{\Psi^2}^2 $$
|
||||
#+end_exercise
|
||||
|
||||
**** Solution :solution:
|
||||
@ -772,7 +772,7 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
||||
\rangle = \bar{E}$ .
|
||||
|
||||
\begin{eqnarray*}
|
||||
\langle E - \bar{E} \rangle^2 & = &
|
||||
\langle (E - \bar{E})^2 \rangle & = &
|
||||
\langle E^2 - 2 E \bar{E} + \bar{E}^2 \rangle \\
|
||||
&=& \langle E^2 \rangle - 2 \langle E \bar{E} \rangle + \langle \bar{E}^2 \rangle \\
|
||||
&=& \langle E^2 \rangle - 2 \langle E \rangle \bar{E} + \bar{E}^2 \\
|
||||
@ -991,13 +991,13 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
|
||||
The estimate of the energy is
|
||||
|
||||
$$
|
||||
E = \frac{1}{M} \sum_{i=1}^M E_M
|
||||
E = \frac{1}{M} \sum_{i=1}^M E_i
|
||||
$$
|
||||
|
||||
The variance of the average energies can be computed as
|
||||
|
||||
$$
|
||||
\sigma^2 = \frac{1}{M-1} \sum_{i=1}^{M} (E_M - E)^2
|
||||
\sigma^2 = \frac{1}{M-1} \sum_{i=1}^{M} (E_i - E)^2
|
||||
$$
|
||||
|
||||
And the confidence interval is given by
|
||||
@ -1315,7 +1315,7 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
|
||||
We will now use the square of the wave function to sample random
|
||||
points distributed with the probability density
|
||||
\[
|
||||
P(\mathbf{r}) = \frac{|Psi(\mathbf{r})|^2)}{\int |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,.
|
||||
P(\mathbf{r}) = \frac{|\Psi(\mathbf{r})|^2}{\int |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,.
|
||||
\]
|
||||
|
||||
The expression of the average energy is now simplified as the average of
|
||||
@ -1353,7 +1353,7 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
|
||||
probability
|
||||
|
||||
$$
|
||||
A(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{T(\mathbf{r}_{n},\mathbf{r}_{n+1}) P(\mathbf{r}_{n+1})}{T(\mathbf{r}_{n+1},\mathbf{r}_n)P(\mathbf{r}_{n})}\right)\,,
|
||||
A(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{T(\mathbf{r}_{n+1}\rightarrow\mathbf{r}_{n}) P(\mathbf{r}_{n+1})}{T(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1})P(\mathbf{r}_{n})}\right)\,,
|
||||
$$
|
||||
|
||||
which, for our choice of transition probability, becomes
|
||||
@ -2083,10 +2083,10 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
|
||||
Consider the time-dependent Schrödinger equation:
|
||||
|
||||
\[
|
||||
i\frac{\partial \Psi(\mathbf{r},t)}{\partial t} = (\hat{H} -E_T) \Psi(\mathbf{r},t)\,.
|
||||
i\frac{\partial \Psi(\mathbf{r},t)}{\partial t} = (\hat{H} -E_{\rm ref}) \Psi(\mathbf{r},t)\,.
|
||||
\]
|
||||
|
||||
where we introduced a shift in the energy, $E_T$, which will come useful below.
|
||||
where we introduced a shift in the energy, $E_{\rm ref}$, which will come useful below.
|
||||
|
||||
We can expand a given starting wave function, $\Psi(\mathbf{r},0)$, in the basis of the eigenstates
|
||||
of the time-independent Hamiltonian, $\Phi_k$, with energies $E_k$:
|
||||
@ -2098,26 +2098,26 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
|
||||
The solution of the Schrödinger equation at time $t$ is
|
||||
|
||||
\[
|
||||
\Psi(\mathbf{r},t) = \sum_k a_k \exp \left( -i\, (E_k-E_T)\, t \right) \Phi_k(\mathbf{r}).
|
||||
\Psi(\mathbf{r},t) = \sum_k a_k \exp \left( -i\, (E_k-E_{\rm ref})\, t \right) \Phi_k(\mathbf{r}).
|
||||
\]
|
||||
|
||||
Now, if we replace the time variable $t$ by an imaginary time variable
|
||||
$\tau=i\,t$, we obtain
|
||||
|
||||
\[
|
||||
-\frac{\partial \psi(\mathbf{r}, \tau)}{\partial \tau} = (\hat{H} -E_T) \psi(\mathbf{r}, \tau)
|
||||
-\frac{\partial \psi(\mathbf{r}, \tau)}{\partial \tau} = (\hat{H} -E_{\rm ref}) \psi(\mathbf{r}, \tau)
|
||||
\]
|
||||
|
||||
where $\psi(\mathbf{r},\tau) = \Psi(\mathbf{r},-i\,)$
|
||||
where $\psi(\mathbf{r},\tau) = \Psi(\mathbf{r},-i\,t)$
|
||||
and
|
||||
|
||||
\begin{eqnarray*}
|
||||
\psi(\mathbf{r},\tau) &=& \sum_k a_k \exp( -E_k\, \tau) \phi_k(\mathbf{r})\\
|
||||
&=& \exp(-(E_0-E_T)\, \tau)\sum_k a_k \exp( -(E_k-E_0)\, \tau) \phi_k(\mathbf{r})\,.
|
||||
\psi(\mathbf{r},\tau) &=& \sum_k a_k \exp( -(E_k-E_{\rm ref})\, \tau) \phi_k(\mathbf{r})\\
|
||||
&=& \exp(-(E_0-E_{\rm ref})\, \tau)\sum_k a_k \exp( -(E_k-E_0)\, \tau) \phi_k(\mathbf{r})\,.
|
||||
\end{eqnarray*}
|
||||
|
||||
For large positive values of $\tau$, $\psi$ is dominated by the
|
||||
$k=0$ term, namely, the lowest eigenstate. If we adjust $E_T$ to the running estimate of $E_0$,
|
||||
$k=0$ term, namely, the lowest eigenstate. If we adjust $E_{\rm ref}$ to the running estimate of $E_0$,
|
||||
we can expect that simulating the differetial equation in
|
||||
imaginary time will converge to the exact ground state of the
|
||||
system.
|
||||
@ -2128,7 +2128,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
|
||||
potential energies as
|
||||
|
||||
\[
|
||||
\frac{\partial \psi(\mathbf{r}, \tau)}{\partial \tau} = \left(\frac{1}{2}\Delta - [V(\mathbf{r}) -E_T]\right) \psi(\mathbf{r}, \tau)\,.
|
||||
\frac{\partial \psi(\mathbf{r}, \tau)}{\partial \tau} = \left(\frac{1}{2}\Delta - [V(\mathbf{r}) -E_{\rm ref}]\right) \psi(\mathbf{r}, \tau)\,.
|
||||
\]
|
||||
|
||||
We can simulate this differential equation as a diffusion-branching process.
|
||||
@ -2137,7 +2137,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
|
||||
To see this, recall that the [[https://en.wikipedia.org/wiki/Diffusion_equation][diffusion equation]] of particles is given by
|
||||
|
||||
\[
|
||||
\frac{\partial \phi(\mathbf{r},t)}{\partial t} = D\, \Delta \phi(\mathbf{r},t).
|
||||
\frac{\partial \psi(\mathbf{r},t)}{\partial t} = D\, \Delta \psi(\mathbf{r},t).
|
||||
\]
|
||||
|
||||
Furthermore, the [[https://en.wikipedia.org/wiki/Reaction_rate][rate of reaction]] $v$ is the speed at which a chemical reaction
|
||||
@ -2203,7 +2203,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
|
||||
-\frac{\partial \Pi(\mathbf{r},\tau)}{\partial \tau}
|
||||
= -\frac{1}{2} \Delta \Pi(\mathbf{r},\tau) +
|
||||
\nabla \left[ \Pi(\mathbf{r},\tau) \frac{\nabla \Psi_T(\mathbf{r})}{\Psi_T(\mathbf{r})}
|
||||
\right] + (E_L(\mathbf{r})-E_T)\Pi(\mathbf{r},\tau)
|
||||
\right] + (E_L(\mathbf{r})-E_{\rm ref})\Pi(\mathbf{r},\tau)
|
||||
\]
|
||||
|
||||
The new "kinetic energy" can be simulated by the drift-diffusion
|
||||
@ -2211,8 +2211,8 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
|
||||
The new "potential" is the local energy, which has smaller fluctuations
|
||||
when $\Psi_T$ gets closer to the exact wave function. It can be simulated by
|
||||
changing the number of particles according to $\exp\left[ -\delta t\,
|
||||
\left(E_L(\mathbf{r}) - E_T\right)\right]$
|
||||
where $E_T$ is the constant we had introduced above, which is adjusted to
|
||||
\left(E_L(\mathbf{r}) - E_{\rm ref}\right)\right]$
|
||||
where $E_{\rm ref}$ is the constant we had introduced above, which is adjusted to
|
||||
the running average energy to keep the number of particles
|
||||
reasonably constant.
|
||||
|
||||
@ -2223,28 +2223,28 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
|
||||
To this aim, we use the mixed estimator of the energy:
|
||||
|
||||
\begin{eqnarray*}
|
||||
E(\tau) &=& \frac{\langle \psi(tau) | \hat{H} | \Psi_T \rangle}{\frac{\langle \psi(tau) | \Psi_T \rangle}\\
|
||||
E(\tau) &=& \frac{\langle \psi(tau) | \hat{H} | \Psi_T \rangle}{\langle \psi(tau) | \Psi_T \rangle}\\
|
||||
&=& \frac{\int \psi(\mathbf{r},\tau) \hat{H} \Psi_T(\mathbf{r}) d\mathbf{r}}
|
||||
{\int \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) d\mathbf{r}} \\
|
||||
&=& \int \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) E_L(\mathbf{r}) d\mathbf{r}}
|
||||
{\int \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) d\mathbf{r}}
|
||||
&=& \frac{\int \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) E_L(\mathbf{r}) d\mathbf{r}}
|
||||
{\int \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) d\mathbf{r}} \,.
|
||||
\end{eqnarray*}
|
||||
|
||||
Since, for large $\tau$, we have that
|
||||
For large $\tau$, we have that
|
||||
|
||||
\[
|
||||
\Pi(\mathbf{r},\tau) =\psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) \rightarrow \Phi_0(\mathbf{r}) \Psi_T(\mathbf{r})\,,
|
||||
\]
|
||||
|
||||
and, using that $\hat{H}$ is Hermitian and that $\Phi_0$ is an eigenstate of the Hamiltonian, we obtain
|
||||
and, using that $\hat{H}$ is Hermitian and that $\Phi_0$ is an eigenstate of the Hamiltonian, we obtain for large $\tau$
|
||||
|
||||
\[
|
||||
E(\tau) = \frac{\langle \psi_\tau | \hat{H} | \Psi_T \rangle}
|
||||
{\langle \psi_\tau | \Psi_T \rangle}
|
||||
= \frac{\langle \Psi_T | \hat{H} | \psi_\tau \rangle}
|
||||
{\langle \Psi_T | \psi_\tau \rangle}
|
||||
\rightarrow E_0 \frac{\langle \Psi_T | \psi_\tau \rangle}
|
||||
{\langle \Psi_T | \psi_\tau \rangle}
|
||||
\rightarrow E_0 \frac{\langle \Psi_T | \Phi_0 \rangle}
|
||||
{\langle \Psi_T | \Phi_0 \rangle}
|
||||
= E_0
|
||||
\]
|
||||
|
||||
@ -2302,7 +2302,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
|
||||
|
||||
Instead of having a variable number of particles to simulate the
|
||||
branching process, one can consider the term
|
||||
$\exp \left( -\delta t\,( E_L(\mathbf{r}) - E_T} \right)$ as a
|
||||
$\exp \left( -\delta t\,( E_L(\mathbf{r}) - E_{\rm ref}) \right)$ as a
|
||||
cumulative product of weights:
|
||||
|
||||
\[
|
||||
|
Loading…
Reference in New Issue
Block a user