mirror of
https://github.com/TREX-CoE/qmc-lttc.git
synced 2024-12-30 16:15:57 +01:00
Added missing files
This commit is contained in:
parent
50dc730ea5
commit
72b05d8d65
48
qmc_gaussian.f90
Normal file
48
qmc_gaussian.f90
Normal file
@ -0,0 +1,48 @@
|
||||
double precision function gaussian(r)
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, parameter :: norm_gauss = 1.d0/(2.d0*dacos(-1.d0))**(1.5d0)
|
||||
gaussian = norm_gauss * dexp( -0.5d0 * (r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
|
||||
end function gaussian
|
||||
|
||||
|
||||
subroutine gaussian_montecarlo(a,nmax,energy)
|
||||
implicit none
|
||||
double precision, intent(in) :: a
|
||||
integer*8 , intent(in) :: nmax
|
||||
double precision, intent(out) :: energy
|
||||
|
||||
integer*8 :: istep
|
||||
|
||||
double precision :: norm, r(3), w
|
||||
|
||||
double precision, external :: e_loc, psi, gaussian
|
||||
|
||||
energy = 0.d0
|
||||
norm = 0.d0
|
||||
do istep = 1,nmax
|
||||
call random_gauss(r,3)
|
||||
w = psi(a,r)
|
||||
w = w*w / gaussian(r)
|
||||
norm = norm + w
|
||||
energy = energy + w * e_loc(a,r)
|
||||
end do
|
||||
energy = energy / norm
|
||||
end subroutine gaussian_montecarlo
|
||||
|
||||
program qmc
|
||||
implicit none
|
||||
double precision, parameter :: a = 0.9
|
||||
integer*8 , parameter :: nmax = 100000
|
||||
integer , parameter :: nruns = 30
|
||||
|
||||
integer :: irun
|
||||
double precision :: X(nruns)
|
||||
double precision :: ave, err
|
||||
|
||||
do irun=1,nruns
|
||||
call gaussian_montecarlo(a,nmax,X(irun))
|
||||
enddo
|
||||
call ave_error(X,nruns,ave,err)
|
||||
print *, 'E = ', ave, '+/-', err
|
||||
end program qmc
|
23
qmc_gaussian.py
Normal file
23
qmc_gaussian.py
Normal file
@ -0,0 +1,23 @@
|
||||
from hydrogen import *
|
||||
from qmc_stats import *
|
||||
|
||||
norm_gauss = 1./(2.*np.pi)**(1.5)
|
||||
def gaussian(r):
|
||||
return norm_gauss * np.exp(-np.dot(r,r)*0.5)
|
||||
|
||||
def MonteCarlo(a,nmax):
|
||||
E = 0.
|
||||
N = 0.
|
||||
for istep in range(nmax):
|
||||
r = np.random.normal(loc=0., scale=1.0, size=(3))
|
||||
w = psi(a,r)
|
||||
w = w*w / gaussian(r)
|
||||
N += w
|
||||
E += w * e_loc(a,r)
|
||||
return E/N
|
||||
|
||||
a = 0.9
|
||||
nmax = 100000
|
||||
X = [MonteCarlo(a,nmax) for i in range(30)]
|
||||
E, deltaE = ave_error(X)
|
||||
print(f"E = {E} +/- {deltaE}")
|
45
vmc.f90
Normal file
45
vmc.f90
Normal file
@ -0,0 +1,45 @@
|
||||
subroutine variational_montecarlo(a,tau,nmax,energy)
|
||||
implicit none
|
||||
double precision, intent(in) :: a, tau
|
||||
integer*8 , intent(in) :: nmax
|
||||
double precision, intent(out) :: energy
|
||||
|
||||
integer*8 :: istep
|
||||
double precision :: norm, r_old(3), r_new(3), d_old(3), sq_tau, chi(3)
|
||||
double precision, external :: e_loc
|
||||
|
||||
sq_tau = dsqrt(tau)
|
||||
|
||||
! Initialization
|
||||
energy = 0.d0
|
||||
norm = 0.d0
|
||||
call random_gauss(r_old,3)
|
||||
|
||||
do istep = 1,nmax
|
||||
call drift(a,r_old,d_old)
|
||||
call random_gauss(chi,3)
|
||||
r_new(:) = r_old(:) + tau * d_old(:) + chi(:)*sq_tau
|
||||
norm = norm + 1.d0
|
||||
energy = energy + e_loc(a,r_new)
|
||||
r_old(:) = r_new(:)
|
||||
end do
|
||||
energy = energy / norm
|
||||
end subroutine variational_montecarlo
|
||||
|
||||
program qmc
|
||||
implicit none
|
||||
double precision, parameter :: a = 0.9
|
||||
double precision, parameter :: tau = 0.2
|
||||
integer*8 , parameter :: nmax = 100000
|
||||
integer , parameter :: nruns = 30
|
||||
|
||||
integer :: irun
|
||||
double precision :: X(nruns)
|
||||
double precision :: ave, err
|
||||
|
||||
do irun=1,nruns
|
||||
call variational_montecarlo(a,tau,nmax,X(irun))
|
||||
enddo
|
||||
call ave_error(X,nruns,ave,err)
|
||||
print *, 'E = ', ave, '+/-', err
|
||||
end program qmc
|
27
vmc.py
Normal file
27
vmc.py
Normal file
@ -0,0 +1,27 @@
|
||||
from hydrogen import *
|
||||
from qmc_stats import *
|
||||
|
||||
def MonteCarlo(a,tau,nmax):
|
||||
sq_tau = np.sqrt(tau)
|
||||
|
||||
# Initialization
|
||||
E = 0.
|
||||
N = 0.
|
||||
r_old = np.random.normal(loc=0., scale=1.0, size=(3))
|
||||
|
||||
for istep in range(nmax):
|
||||
d_old = drift(a,r_old)
|
||||
chi = np.random.normal(loc=0., scale=1.0, size=(3))
|
||||
r_new = r_old + tau * d_old + chi*sq_tau
|
||||
N += 1.
|
||||
E += e_loc(a,r_new)
|
||||
r_old = r_new
|
||||
return E/N
|
||||
|
||||
|
||||
a = 0.9
|
||||
nmax = 100000
|
||||
tau = 0.2
|
||||
X = [MonteCarlo(a,tau,nmax) for i in range(30)]
|
||||
E, deltaE = ave_error(X)
|
||||
print(f"E = {E} +/- {deltaE}")
|
71
vmc_metropolis.f90
Normal file
71
vmc_metropolis.f90
Normal file
@ -0,0 +1,71 @@
|
||||
subroutine variational_montecarlo(a,tau,nmax,energy,accep_rate)
|
||||
implicit none
|
||||
double precision, intent(in) :: a, tau
|
||||
integer*8 , intent(in) :: nmax
|
||||
double precision, intent(out) :: energy, accep_rate
|
||||
|
||||
integer*8 :: istep
|
||||
double precision :: norm, sq_tau, chi(3), d2_old, prod, u
|
||||
double precision :: psi_old, psi_new, d2_new, argexpo, q
|
||||
double precision :: r_old(3), r_new(3)
|
||||
double precision :: d_old(3), d_new(3)
|
||||
double precision, external :: e_loc, psi
|
||||
|
||||
sq_tau = dsqrt(tau)
|
||||
|
||||
! Initialization
|
||||
energy = 0.d0
|
||||
norm = 0.d0
|
||||
accep_rate = 0.d0
|
||||
call random_gauss(r_old,3)
|
||||
call drift(a,r_old,d_old)
|
||||
d2_old = d_old(1)*d_old(1) + d_old(2)*d_old(2) + d_old(3)*d_old(3)
|
||||
psi_old = psi(a,r_old)
|
||||
|
||||
do istep = 1,nmax
|
||||
call random_gauss(chi,3)
|
||||
r_new(:) = r_old(:) + tau * d_old(:) + chi(:)*sq_tau
|
||||
call drift(a,r_new,d_new)
|
||||
d2_new = d_new(1)*d_new(1) + d_new(2)*d_new(2) + d_new(3)*d_new(3)
|
||||
psi_new = psi(a,r_new)
|
||||
! Metropolis
|
||||
prod = (d_new(1) + d_old(1))*(r_new(1) - r_old(1)) + &
|
||||
(d_new(2) + d_old(2))*(r_new(2) - r_old(2)) + &
|
||||
(d_new(3) + d_old(3))*(r_new(3) - r_old(3))
|
||||
argexpo = 0.5d0 * (d2_new - d2_old)*tau + prod
|
||||
q = psi_new / psi_old
|
||||
q = dexp(-argexpo) * q*q
|
||||
call random_number(u)
|
||||
if (u<q) then
|
||||
accep_rate = accep_rate + 1.d0
|
||||
r_old(:) = r_new(:)
|
||||
d_old(:) = d_new(:)
|
||||
d2_old = d2_new
|
||||
psi_old = psi_new
|
||||
end if
|
||||
norm = norm + 1.d0
|
||||
energy = energy + e_loc(a,r_old)
|
||||
end do
|
||||
energy = energy / norm
|
||||
accep_rate = accep_rate / norm
|
||||
end subroutine variational_montecarlo
|
||||
|
||||
program qmc
|
||||
implicit none
|
||||
double precision, parameter :: a = 0.9
|
||||
double precision, parameter :: tau = 1.0
|
||||
integer*8 , parameter :: nmax = 100000
|
||||
integer , parameter :: nruns = 30
|
||||
|
||||
integer :: irun
|
||||
double precision :: X(nruns), accep(nruns)
|
||||
double precision :: ave, err
|
||||
|
||||
do irun=1,nruns
|
||||
call variational_montecarlo(a,tau,nmax,X(irun),accep(irun))
|
||||
enddo
|
||||
call ave_error(X,nruns,ave,err)
|
||||
print *, 'E = ', ave, '+/-', err
|
||||
call ave_error(accep,nruns,ave,err)
|
||||
print *, 'A = ', ave, '+/-', err
|
||||
end program qmc
|
41
vmc_metropolis.py
Normal file
41
vmc_metropolis.py
Normal file
@ -0,0 +1,41 @@
|
||||
from hydrogen import *
|
||||
from qmc_stats import *
|
||||
|
||||
def MonteCarlo(a,tau,nmax):
|
||||
E = 0.
|
||||
N = 0.
|
||||
accep_rate = 0.
|
||||
sq_tau = np.sqrt(tau)
|
||||
r_old = np.random.normal(loc=0., scale=1.0, size=(3))
|
||||
d_old = drift(a,r_old)
|
||||
d2_old = np.dot(d_old,d_old)
|
||||
psi_old = psi(a,r_old)
|
||||
for istep in range(nmax):
|
||||
chi = np.random.normal(loc=0., scale=1.0, size=(3))
|
||||
r_new = r_old + tau * d_old + sq_tau * chi
|
||||
d_new = drift(a,r_new)
|
||||
d2_new = np.dot(d_new,d_new)
|
||||
psi_new = psi(a,r_new)
|
||||
# Metropolis
|
||||
prod = np.dot((d_new + d_old), (r_new - r_old))
|
||||
argexpo = 0.5 * (d2_new - d2_old)*tau + prod
|
||||
q = psi_new / psi_old
|
||||
q = np.exp(-argexpo) * q*q
|
||||
if np.random.uniform() < q:
|
||||
accep_rate += 1.
|
||||
r_old = r_new
|
||||
d_old = d_new
|
||||
d2_old = d2_new
|
||||
psi_old = psi_new
|
||||
N += 1.
|
||||
E += e_loc(a,r_old)
|
||||
return E/N, accep_rate/N
|
||||
|
||||
|
||||
a = 0.9
|
||||
nmax = 100000
|
||||
tau = 2.5
|
||||
X = [MonteCarlo(a,tau,nmax) for i in range(30)]
|
||||
E, deltaE = ave_error([x[0] for x in X])
|
||||
A, deltaA = ave_error([x[1] for x in X])
|
||||
print(f"E = {E} +/- {deltaE} {A} +/- {deltaA}")
|
Loading…
Reference in New Issue
Block a user