1
0
mirror of https://github.com/TREX-CoE/qmc-lttc.git synced 2025-01-03 01:56:20 +01:00
This commit is contained in:
scemama 2021-02-02 21:49:00 +00:00
parent 18d529e80c
commit 6c5f51527e

View File

@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head> <head>
<!-- 2021-02-02 Tue 16:05 --> <!-- 2021-02-02 Tue 21:49 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" /> <meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Quantum Monte Carlo</title> <title>Quantum Monte Carlo</title>
@ -329,153 +329,153 @@ for the JavaScript code in this tag.
<h2>Table of Contents</h2> <h2>Table of Contents</h2>
<div id="text-table-of-contents"> <div id="text-table-of-contents">
<ul> <ul>
<li><a href="#orgf35fcfa">1. Introduction</a> <li><a href="#org23a1413">1. Introduction</a>
<ul> <ul>
<li><a href="#orgff4a500">1.1. Energy and local energy</a></li> <li><a href="#org705f291">1.1. Energy and local energy</a></li>
</ul> </ul>
</li> </li>
<li><a href="#orge5391c1">2. Numerical evaluation of the energy of the hydrogen atom</a> <li><a href="#org39b8649">2. Numerical evaluation of the energy of the hydrogen atom</a>
<ul> <ul>
<li><a href="#orgc557da6">2.1. Local energy</a> <li><a href="#org64bc099">2.1. Local energy</a>
<ul> <ul>
<li><a href="#orga4e6b54">2.1.1. Exercise 1</a> <li><a href="#org957f24b">2.1.1. Exercise 1</a>
<ul> <ul>
<li><a href="#org801cff3">2.1.1.1. Solution</a></li> <li><a href="#org00d98c2">2.1.1.1. Solution</a></li>
</ul> </ul>
</li> </li>
<li><a href="#org4677e85">2.1.2. Exercise 2</a> <li><a href="#org0803c94">2.1.2. Exercise 2</a>
<ul> <ul>
<li><a href="#orgbc257d9">2.1.2.1. Solution</a></li> <li><a href="#org20ccc64">2.1.2.1. Solution</a></li>
</ul> </ul>
</li> </li>
<li><a href="#orgc8a1a2b">2.1.3. Exercise 3</a> <li><a href="#orgab4e595">2.1.3. Exercise 3</a>
<ul> <ul>
<li><a href="#org46a48e1">2.1.3.1. Solution</a></li> <li><a href="#org25b6eae">2.1.3.1. Solution</a></li>
</ul> </ul>
</li> </li>
<li><a href="#org49b162e">2.1.4. Exercise 4</a> <li><a href="#org06544d4">2.1.4. Exercise 4</a>
<ul> <ul>
<li><a href="#org11b7ba8">2.1.4.1. Solution</a></li> <li><a href="#org044a7e2">2.1.4.1. Solution</a></li>
</ul> </ul>
</li> </li>
<li><a href="#orgea20a4d">2.1.5. Exercise 5</a> <li><a href="#orgba0d5bf">2.1.5. Exercise 5</a>
<ul> <ul>
<li><a href="#orga8ca1f7">2.1.5.1. Solution</a></li> <li><a href="#orgdbac137">2.1.5.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#org1aceedb">2.2. Plot of the local energy along the \(x\) axis</a> <li><a href="#orgf55ff90">2.2. Plot of the local energy along the \(x\) axis</a>
<ul> <ul>
<li><a href="#orgfdfeaeb">2.2.1. Exercise</a> <li><a href="#org0c2d915">2.2.1. Exercise</a>
<ul> <ul>
<li><a href="#org7b8e758">2.2.1.1. Solution</a></li> <li><a href="#org12d0a95">2.2.1.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#orgb878d1c">2.3. Numerical estimation of the energy</a> <li><a href="#org28ecc47">2.3. Numerical estimation of the energy</a>
<ul> <ul>
<li><a href="#orga3c04f6">2.3.1. Exercise</a> <li><a href="#org21ff2e3">2.3.1. Exercise</a>
<ul> <ul>
<li><a href="#org3ff01c5">2.3.1.1. Solution</a></li> <li><a href="#orgfa5b635">2.3.1.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#org61a9a5a">2.4. Variance of the local energy</a> <li><a href="#org3357076">2.4. Variance of the local energy</a>
<ul> <ul>
<li><a href="#org3a9cd19">2.4.1. Exercise (optional)</a> <li><a href="#org65d3fe0">2.4.1. Exercise (optional)</a>
<ul> <ul>
<li><a href="#orge49d691">2.4.1.1. Solution</a></li> <li><a href="#org4209e53">2.4.1.1. Solution</a></li>
</ul> </ul>
</li> </li>
<li><a href="#orgc95b8fc">2.4.2. Exercise</a> <li><a href="#org22a1d92">2.4.2. Exercise</a>
<ul> <ul>
<li><a href="#org0cf5abe">2.4.2.1. Solution</a></li> <li><a href="#orgf7c310b">2.4.2.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#org03c7717">3. Variational Monte Carlo</a> <li><a href="#orgc1159c2">3. Variational Monte Carlo</a>
<ul> <ul>
<li><a href="#org7092837">3.1. Computation of the statistical error</a> <li><a href="#orgf056ac8">3.1. Computation of the statistical error</a>
<ul> <ul>
<li><a href="#orgd7c44e9">3.1.1. Exercise</a> <li><a href="#org98dc313">3.1.1. Exercise</a>
<ul> <ul>
<li><a href="#org7408e00">3.1.1.1. Solution</a></li> <li><a href="#org2405a78">3.1.1.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#org05b64e8">3.2. Uniform sampling in the box</a> <li><a href="#org83cdcfd">3.2. Uniform sampling in the box</a>
<ul> <ul>
<li><a href="#org5169b03">3.2.1. Exercise</a> <li><a href="#org8d3b2eb">3.2.1. Exercise</a>
<ul> <ul>
<li><a href="#org57eabbc">3.2.1.1. Solution</a></li> <li><a href="#org9f00468">3.2.1.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#org4ee2da0">3.3. Metropolis sampling with \(\Psi^2\)</a> <li><a href="#orgd33cfda">3.3. Metropolis sampling with \(\Psi^2\)</a>
<ul> <ul>
<li><a href="#org521c913">3.3.1. Optimal step size</a></li> <li><a href="#org81b01e4">3.3.1. Optimal step size</a></li>
<li><a href="#org50b36aa">3.3.2. Exercise</a> <li><a href="#org71a312e">3.3.2. Exercise</a>
<ul> <ul>
<li><a href="#org9783fbe">3.3.2.1. Solution</a></li> <li><a href="#org4dba89d">3.3.2.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#orgf7e192c">3.4. Generalized Metropolis algorithm</a> <li><a href="#org9a41389">3.4. Generalized Metropolis algorithm</a>
<ul> <ul>
<li><a href="#org868c86a">3.4.1. Gaussian random number generator</a></li> <li><a href="#org267d6c4">3.4.1. Gaussian random number generator</a></li>
<li><a href="#org3da25b4">3.4.2. Exercise 1</a> <li><a href="#org3a1bc00">3.4.2. Exercise 1</a>
<ul> <ul>
<li><a href="#orgdaf9219">3.4.2.1. Solution</a></li> <li><a href="#orgbedbe5e">3.4.2.1. Solution</a></li>
</ul> </ul>
</li> </li>
<li><a href="#org5a4e90b">3.4.3. Exercise 2</a> <li><a href="#orgd524514">3.4.3. Exercise 2</a>
<ul> <ul>
<li><a href="#orgb2b31bc">3.4.3.1. Solution</a></li> <li><a href="#orgd930b45">3.4.3.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#orgefd778a">4. Diffusion Monte Carlo</a> <li><a href="#orgd485152">4. Diffusion Monte Carlo</a>
<ul> <ul>
<li><a href="#org481ff44">4.1. Schrödinger equation in imaginary time</a></li> <li><a href="#org1b239e1">4.1. Schrödinger equation in imaginary time</a></li>
<li><a href="#orgc28941f">4.2. Diffusion and branching</a></li> <li><a href="#org3dbb265">4.2. Relation to diffusion</a></li>
<li><a href="#org19f6b36">4.3. Importance sampling</a> <li><a href="#org295d821">4.3. Importance sampling</a>
<ul> <ul>
<li><a href="#orgd63eaab">4.3.1. Appendix : Details of the Derivation</a></li> <li><a href="#orgd2e16c4">4.3.1. Appendix : Details of the Derivation</a></li>
</ul> </ul>
</li> </li>
<li><a href="#org498bc42">4.4. Pure Diffusion Monte Carlo (PDMC)</a></li> <li><a href="#org929363f">4.4. Pure Diffusion Monte Carlo (PDMC)</a></li>
<li><a href="#org82aee19">4.5. Hydrogen atom</a> <li><a href="#orgc31115c">4.5. Hydrogen atom</a>
<ul> <ul>
<li><a href="#org28fd5e4">4.5.1. Exercise</a> <li><a href="#org5a87685">4.5.1. Exercise</a>
<ul> <ul>
<li><a href="#org89b211a">4.5.1.1. Solution</a></li> <li><a href="#orgb894c1f">4.5.1.1. Solution</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#org3cb42a6">4.6. <span class="todo TODO">TODO</span> H<sub>2</sub></a></li> <li><a href="#orgecf180f">4.6. <span class="todo TODO">TODO</span> H<sub>2</sub></a></li>
</ul> </ul>
</li> </li>
<li><a href="#orgb2c8cf6">5. <span class="todo TODO">TODO</span> <code>[0/3]</code> Last things to do</a></li> <li><a href="#org3878dc4">5. <span class="todo TODO">TODO</span> <code>[0/3]</code> Last things to do</a></li>
<li><a href="#org43d0643">6. Schedule</a></li> <li><a href="#org6887311">6. Schedule</a></li>
</ul> </ul>
</div> </div>
</div> </div>
<div id="outline-container-orgf35fcfa" class="outline-2"> <div id="outline-container-org23a1413" class="outline-2">
<h2 id="orgf35fcfa"><span class="section-number-2">1</span> Introduction</h2> <h2 id="org23a1413"><span class="section-number-2">1</span> Introduction</h2>
<div class="outline-text-2" id="text-1"> <div class="outline-text-2" id="text-1">
<p> <p>
This website contains the QMC tutorial of the 2021 LTTC winter school This website contains the QMC tutorial of the 2021 LTTC winter school
@ -515,8 +515,8 @@ coordinates, etc).
</p> </p>
</div> </div>
<div id="outline-container-orgff4a500" class="outline-3"> <div id="outline-container-org705f291" class="outline-3">
<h3 id="orgff4a500"><span class="section-number-3">1.1</span> Energy and local energy</h3> <h3 id="org705f291"><span class="section-number-3">1.1</span> Energy and local energy</h3>
<div class="outline-text-3" id="text-1-1"> <div class="outline-text-3" id="text-1-1">
<p> <p>
For a given system with Hamiltonian \(\hat{H}\) and wave function \(\Psi\), we define the local energy as For a given system with Hamiltonian \(\hat{H}\) and wave function \(\Psi\), we define the local energy as
@ -599,8 +599,8 @@ energy computed over these configurations:
</div> </div>
</div> </div>
<div id="outline-container-orge5391c1" class="outline-2"> <div id="outline-container-org39b8649" class="outline-2">
<h2 id="orge5391c1"><span class="section-number-2">2</span> Numerical evaluation of the energy of the hydrogen atom</h2> <h2 id="org39b8649"><span class="section-number-2">2</span> Numerical evaluation of the energy of the hydrogen atom</h2>
<div class="outline-text-2" id="text-2"> <div class="outline-text-2" id="text-2">
<p> <p>
In this section, we consider the hydrogen atom with the following In this section, we consider the hydrogen atom with the following
@ -629,8 +629,8 @@ To do that, we will compute the local energy and check whether it is constant.
</p> </p>
</div> </div>
<div id="outline-container-orgc557da6" class="outline-3"> <div id="outline-container-org64bc099" class="outline-3">
<h3 id="orgc557da6"><span class="section-number-3">2.1</span> Local energy</h3> <h3 id="org64bc099"><span class="section-number-3">2.1</span> Local energy</h3>
<div class="outline-text-3" id="text-2-1"> <div class="outline-text-3" id="text-2-1">
<p> <p>
You will now program all quantities needed to compute the local energy of the H atom for the given wave function. You will now program all quantities needed to compute the local energy of the H atom for the given wave function.
@ -657,8 +657,8 @@ to catch the error.
</div> </div>
</div> </div>
<div id="outline-container-orga4e6b54" class="outline-4"> <div id="outline-container-org957f24b" class="outline-4">
<h4 id="orga4e6b54"><span class="section-number-4">2.1.1</span> Exercise 1</h4> <h4 id="org957f24b"><span class="section-number-4">2.1.1</span> Exercise 1</h4>
<div class="outline-text-4" id="text-2-1-1"> <div class="outline-text-4" id="text-2-1-1">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -703,8 +703,8 @@ and returns the potential.
</div> </div>
</div> </div>
<div id="outline-container-org801cff3" class="outline-5"> <div id="outline-container-org00d98c2" class="outline-5">
<h5 id="org801cff3"><span class="section-number-5">2.1.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org00d98c2"><span class="section-number-5">2.1.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-1-1"> <div class="outline-text-5" id="text-2-1-1-1">
<p> <p>
<b>Python</b> <b>Python</b>
@ -745,8 +745,8 @@ and returns the potential.
</div> </div>
</div> </div>
<div id="outline-container-org4677e85" class="outline-4"> <div id="outline-container-org0803c94" class="outline-4">
<h4 id="org4677e85"><span class="section-number-4">2.1.2</span> Exercise 2</h4> <h4 id="org0803c94"><span class="section-number-4">2.1.2</span> Exercise 2</h4>
<div class="outline-text-4" id="text-2-1-2"> <div class="outline-text-4" id="text-2-1-2">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -781,8 +781,8 @@ input arguments, and returns a scalar.
</div> </div>
</div> </div>
<div id="outline-container-orgbc257d9" class="outline-5"> <div id="outline-container-org20ccc64" class="outline-5">
<h5 id="orgbc257d9"><span class="section-number-5">2.1.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org20ccc64"><span class="section-number-5">2.1.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-2-1"> <div class="outline-text-5" id="text-2-1-2-1">
<p> <p>
<b>Python</b> <b>Python</b>
@ -809,8 +809,8 @@ input arguments, and returns a scalar.
</div> </div>
</div> </div>
<div id="outline-container-orgc8a1a2b" class="outline-4"> <div id="outline-container-orgab4e595" class="outline-4">
<h4 id="orgc8a1a2b"><span class="section-number-4">2.1.3</span> Exercise 3</h4> <h4 id="orgab4e595"><span class="section-number-4">2.1.3</span> Exercise 3</h4>
<div class="outline-text-4" id="text-2-1-3"> <div class="outline-text-4" id="text-2-1-3">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -891,8 +891,8 @@ Therefore, the local kinetic energy is
</div> </div>
</div> </div>
<div id="outline-container-org46a48e1" class="outline-5"> <div id="outline-container-org25b6eae" class="outline-5">
<h5 id="org46a48e1"><span class="section-number-5">2.1.3.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org25b6eae"><span class="section-number-5">2.1.3.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-3-1"> <div class="outline-text-5" id="text-2-1-3-1">
<p> <p>
<b>Python</b> <b>Python</b>
@ -933,8 +933,8 @@ Therefore, the local kinetic energy is
</div> </div>
</div> </div>
<div id="outline-container-org49b162e" class="outline-4"> <div id="outline-container-org06544d4" class="outline-4">
<h4 id="org49b162e"><span class="section-number-4">2.1.4</span> Exercise 4</h4> <h4 id="org06544d4"><span class="section-number-4">2.1.4</span> Exercise 4</h4>
<div class="outline-text-4" id="text-2-1-4"> <div class="outline-text-4" id="text-2-1-4">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -993,8 +993,8 @@ are calling is yours.
</div> </div>
</div> </div>
<div id="outline-container-org11b7ba8" class="outline-5"> <div id="outline-container-org044a7e2" class="outline-5">
<h5 id="org11b7ba8"><span class="section-number-5">2.1.4.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org044a7e2"><span class="section-number-5">2.1.4.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-4-1"> <div class="outline-text-5" id="text-2-1-4-1">
<p> <p>
<b>Python</b> <b>Python</b>
@ -1025,8 +1025,8 @@ are calling is yours.
</div> </div>
</div> </div>
<div id="outline-container-orgea20a4d" class="outline-4"> <div id="outline-container-orgba0d5bf" class="outline-4">
<h4 id="orgea20a4d"><span class="section-number-4">2.1.5</span> Exercise 5</h4> <h4 id="orgba0d5bf"><span class="section-number-4">2.1.5</span> Exercise 5</h4>
<div class="outline-text-4" id="text-2-1-5"> <div class="outline-text-4" id="text-2-1-5">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -1036,8 +1036,8 @@ Find the theoretical value of \(a\) for which \(\Psi\) is an eigenfunction of \(
</div> </div>
</div> </div>
<div id="outline-container-orga8ca1f7" class="outline-5"> <div id="outline-container-orgdbac137" class="outline-5">
<h5 id="orga8ca1f7"><span class="section-number-5">2.1.5.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="orgdbac137"><span class="section-number-5">2.1.5.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-5-1"> <div class="outline-text-5" id="text-2-1-5-1">
\begin{eqnarray*} \begin{eqnarray*}
E &=& \frac{\hat{H} \Psi}{\Psi} = - \frac{1}{2} \frac{\Delta \Psi}{\Psi} - E &=& \frac{\hat{H} \Psi}{\Psi} = - \frac{1}{2} \frac{\Delta \Psi}{\Psi} -
@ -1057,8 +1057,8 @@ equal to -0.5 atomic units.
</div> </div>
</div> </div>
<div id="outline-container-org1aceedb" class="outline-3"> <div id="outline-container-orgf55ff90" class="outline-3">
<h3 id="org1aceedb"><span class="section-number-3">2.2</span> Plot of the local energy along the \(x\) axis</h3> <h3 id="orgf55ff90"><span class="section-number-3">2.2</span> Plot of the local energy along the \(x\) axis</h3>
<div class="outline-text-3" id="text-2-2"> <div class="outline-text-3" id="text-2-2">
<p> <p>
The program you will write in this section will be written in The program you will write in this section will be written in
@ -1089,8 +1089,8 @@ In Fortran, you will need to compile all the source files together:
</div> </div>
</div> </div>
<div id="outline-container-orgfdfeaeb" class="outline-4"> <div id="outline-container-org0c2d915" class="outline-4">
<h4 id="orgfdfeaeb"><span class="section-number-4">2.2.1</span> Exercise</h4> <h4 id="org0c2d915"><span class="section-number-4">2.2.1</span> Exercise</h4>
<div class="outline-text-4" id="text-2-2-1"> <div class="outline-text-4" id="text-2-2-1">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -1184,8 +1184,8 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
</div> </div>
</div> </div>
<div id="outline-container-org7b8e758" class="outline-5"> <div id="outline-container-org12d0a95" class="outline-5">
<h5 id="org7b8e758"><span class="section-number-5">2.2.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org12d0a95"><span class="section-number-5">2.2.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-2-1-1"> <div class="outline-text-5" id="text-2-2-1-1">
<p> <p>
<b>Python</b> <b>Python</b>
@ -1262,8 +1262,8 @@ plt.savefig(<span style="color: #8b2252;">"plot_py.png"</span>)
</div> </div>
</div> </div>
<div id="outline-container-orgb878d1c" class="outline-3"> <div id="outline-container-org28ecc47" class="outline-3">
<h3 id="orgb878d1c"><span class="section-number-3">2.3</span> Numerical estimation of the energy</h3> <h3 id="org28ecc47"><span class="section-number-3">2.3</span> Numerical estimation of the energy</h3>
<div class="outline-text-3" id="text-2-3"> <div class="outline-text-3" id="text-2-3">
<p> <p>
If the space is discretized in small volume elements \(\mathbf{r}_i\) If the space is discretized in small volume elements \(\mathbf{r}_i\)
@ -1293,8 +1293,8 @@ The energy is biased because:
</div> </div>
<div id="outline-container-orga3c04f6" class="outline-4"> <div id="outline-container-org21ff2e3" class="outline-4">
<h4 id="orga3c04f6"><span class="section-number-4">2.3.1</span> Exercise</h4> <h4 id="org21ff2e3"><span class="section-number-4">2.3.1</span> Exercise</h4>
<div class="outline-text-4" id="text-2-3-1"> <div class="outline-text-4" id="text-2-3-1">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -1365,8 +1365,8 @@ To compile the Fortran and run it:
</div> </div>
</div> </div>
<div id="outline-container-org3ff01c5" class="outline-5"> <div id="outline-container-orgfa5b635" class="outline-5">
<h5 id="org3ff01c5"><span class="section-number-5">2.3.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="orgfa5b635"><span class="section-number-5">2.3.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-3-1-1"> <div class="outline-text-5" id="text-2-3-1-1">
<p> <p>
<b>Python</b> <b>Python</b>
@ -1483,8 +1483,8 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002
</div> </div>
</div> </div>
<div id="outline-container-org61a9a5a" class="outline-3"> <div id="outline-container-org3357076" class="outline-3">
<h3 id="org61a9a5a"><span class="section-number-3">2.4</span> Variance of the local energy</h3> <h3 id="org3357076"><span class="section-number-3">2.4</span> Variance of the local energy</h3>
<div class="outline-text-3" id="text-2-4"> <div class="outline-text-3" id="text-2-4">
<p> <p>
The variance of the local energy is a functional of \(\Psi\) The variance of the local energy is a functional of \(\Psi\)
@ -1511,8 +1511,8 @@ energy can be used as a measure of the quality of a wave function.
</p> </p>
</div> </div>
<div id="outline-container-org3a9cd19" class="outline-4"> <div id="outline-container-org65d3fe0" class="outline-4">
<h4 id="org3a9cd19"><span class="section-number-4">2.4.1</span> Exercise (optional)</h4> <h4 id="org65d3fe0"><span class="section-number-4">2.4.1</span> Exercise (optional)</h4>
<div class="outline-text-4" id="text-2-4-1"> <div class="outline-text-4" id="text-2-4-1">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -1523,8 +1523,8 @@ Prove that :
</div> </div>
</div> </div>
<div id="outline-container-orge49d691" class="outline-5"> <div id="outline-container-org4209e53" class="outline-5">
<h5 id="orge49d691"><span class="section-number-5">2.4.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org4209e53"><span class="section-number-5">2.4.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-4-1-1"> <div class="outline-text-5" id="text-2-4-1-1">
<p> <p>
\(\bar{E} = \langle E \rangle\) is a constant, so \(\langle \bar{E} \(\bar{E} = \langle E \rangle\) is a constant, so \(\langle \bar{E}
@ -1543,8 +1543,8 @@ Prove that :
</div> </div>
</div> </div>
</div> </div>
<div id="outline-container-orgc95b8fc" class="outline-4"> <div id="outline-container-org22a1d92" class="outline-4">
<h4 id="orgc95b8fc"><span class="section-number-4">2.4.2</span> Exercise</h4> <h4 id="org22a1d92"><span class="section-number-4">2.4.2</span> Exercise</h4>
<div class="outline-text-4" id="text-2-4-2"> <div class="outline-text-4" id="text-2-4-2">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -1620,8 +1620,8 @@ To compile and run:
</div> </div>
</div> </div>
<div id="outline-container-org0cf5abe" class="outline-5"> <div id="outline-container-orgf7c310b" class="outline-5">
<h5 id="org0cf5abe"><span class="section-number-5">2.4.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="orgf7c310b"><span class="section-number-5">2.4.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-4-2-1"> <div class="outline-text-5" id="text-2-4-2-1">
<p> <p>
<b>Python</b> <b>Python</b>
@ -1760,8 +1760,8 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814
</div> </div>
</div> </div>
<div id="outline-container-org03c7717" class="outline-2"> <div id="outline-container-orgc1159c2" class="outline-2">
<h2 id="org03c7717"><span class="section-number-2">3</span> Variational Monte Carlo</h2> <h2 id="orgc1159c2"><span class="section-number-2">3</span> Variational Monte Carlo</h2>
<div class="outline-text-2" id="text-3"> <div class="outline-text-2" id="text-3">
<p> <p>
Numerical integration with deterministic methods is very efficient Numerical integration with deterministic methods is very efficient
@ -1777,8 +1777,8 @@ interval.
</p> </p>
</div> </div>
<div id="outline-container-org7092837" class="outline-3"> <div id="outline-container-orgf056ac8" class="outline-3">
<h3 id="org7092837"><span class="section-number-3">3.1</span> Computation of the statistical error</h3> <h3 id="orgf056ac8"><span class="section-number-3">3.1</span> Computation of the statistical error</h3>
<div class="outline-text-3" id="text-3-1"> <div class="outline-text-3" id="text-3-1">
<p> <p>
To compute the statistical error, you need to perform \(M\) To compute the statistical error, you need to perform \(M\)
@ -1818,8 +1818,8 @@ And the confidence interval is given by
</p> </p>
</div> </div>
<div id="outline-container-orgd7c44e9" class="outline-4"> <div id="outline-container-org98dc313" class="outline-4">
<h4 id="orgd7c44e9"><span class="section-number-4">3.1.1</span> Exercise</h4> <h4 id="org98dc313"><span class="section-number-4">3.1.1</span> Exercise</h4>
<div class="outline-text-4" id="text-3-1-1"> <div class="outline-text-4" id="text-3-1-1">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -1859,8 +1859,8 @@ input array.
</div> </div>
</div> </div>
<div id="outline-container-org7408e00" class="outline-5"> <div id="outline-container-org2405a78" class="outline-5">
<h5 id="org7408e00"><span class="section-number-5">3.1.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org2405a78"><span class="section-number-5">3.1.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-3-1-1-1"> <div class="outline-text-5" id="text-3-1-1-1">
<p> <p>
<b>Python</b> <b>Python</b>
@ -1921,8 +1921,8 @@ input array.
</div> </div>
</div> </div>
<div id="outline-container-org05b64e8" class="outline-3"> <div id="outline-container-org83cdcfd" class="outline-3">
<h3 id="org05b64e8"><span class="section-number-3">3.2</span> Uniform sampling in the box</h3> <h3 id="org83cdcfd"><span class="section-number-3">3.2</span> Uniform sampling in the box</h3>
<div class="outline-text-3" id="text-3-2"> <div class="outline-text-3" id="text-3-2">
<p> <p>
We will now perform our first Monte Carlo calculation to compute the We will now perform our first Monte Carlo calculation to compute the
@ -1983,8 +1983,8 @@ compute the statistical error.
</p> </p>
</div> </div>
<div id="outline-container-org5169b03" class="outline-4"> <div id="outline-container-org8d3b2eb" class="outline-4">
<h4 id="org5169b03"><span class="section-number-4">3.2.1</span> Exercise</h4> <h4 id="org8d3b2eb"><span class="section-number-4">3.2.1</span> Exercise</h4>
<div class="outline-text-4" id="text-3-2-1"> <div class="outline-text-4" id="text-3-2-1">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -2086,8 +2086,8 @@ well as the index of the current step.
</div> </div>
</div> </div>
<div id="outline-container-org57eabbc" class="outline-5"> <div id="outline-container-org9f00468" class="outline-5">
<h5 id="org57eabbc"><span class="section-number-5">3.2.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org9f00468"><span class="section-number-5">3.2.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-3-2-1-1"> <div class="outline-text-5" id="text-3-2-1-1">
<p> <p>
<b>Python</b> <b>Python</b>
@ -2193,8 +2193,8 @@ E = -0.48084122147238995 +/- 2.4983775878329355E-003
</div> </div>
</div> </div>
<div id="outline-container-org4ee2da0" class="outline-3"> <div id="outline-container-orgd33cfda" class="outline-3">
<h3 id="org4ee2da0"><span class="section-number-3">3.3</span> Metropolis sampling with \(\Psi^2\)</h3> <h3 id="orgd33cfda"><span class="section-number-3">3.3</span> Metropolis sampling with \(\Psi^2\)</h3>
<div class="outline-text-3" id="text-3-3"> <div class="outline-text-3" id="text-3-3">
<p> <p>
We will now use the square of the wave function to sample random We will now use the square of the wave function to sample random
@ -2313,8 +2313,8 @@ All samples should be kept, from both accepted <i>and</i> rejected moves.
</div> </div>
<div id="outline-container-org521c913" class="outline-4"> <div id="outline-container-org81b01e4" class="outline-4">
<h4 id="org521c913"><span class="section-number-4">3.3.1</span> Optimal step size</h4> <h4 id="org81b01e4"><span class="section-number-4">3.3.1</span> Optimal step size</h4>
<div class="outline-text-4" id="text-3-3-1"> <div class="outline-text-4" id="text-3-3-1">
<p> <p>
If the box is infinitely small, the ratio will be very close If the box is infinitely small, the ratio will be very close
@ -2349,8 +2349,8 @@ the same variable later on to store a time step.
</div> </div>
<div id="outline-container-org50b36aa" class="outline-4"> <div id="outline-container-org71a312e" class="outline-4">
<h4 id="org50b36aa"><span class="section-number-4">3.3.2</span> Exercise</h4> <h4 id="org71a312e"><span class="section-number-4">3.3.2</span> Exercise</h4>
<div class="outline-text-4" id="text-3-3-2"> <div class="outline-text-4" id="text-3-3-2">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -2459,8 +2459,8 @@ Can you observe a reduction in the statistical error?
</div> </div>
</div> </div>
<div id="outline-container-org9783fbe" class="outline-5"> <div id="outline-container-org4dba89d" class="outline-5">
<h5 id="org9783fbe"><span class="section-number-5">3.3.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="org4dba89d"><span class="section-number-5">3.3.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-3-3-2-1"> <div class="outline-text-5" id="text-3-3-2-1">
<p> <p>
<b>Python</b> <b>Python</b>
@ -2607,8 +2607,8 @@ A = 0.50762633333333318 +/- 3.4601756760043725E-004
</div> </div>
</div> </div>
<div id="outline-container-orgf7e192c" class="outline-3"> <div id="outline-container-org9a41389" class="outline-3">
<h3 id="orgf7e192c"><span class="section-number-3">3.4</span> Generalized Metropolis algorithm</h3> <h3 id="org9a41389"><span class="section-number-3">3.4</span> Generalized Metropolis algorithm</h3>
<div class="outline-text-3" id="text-3-4"> <div class="outline-text-3" id="text-3-4">
<p> <p>
One can use more efficient numerical schemes to move the electrons by choosing a smarter expression for the transition probability. One can use more efficient numerical schemes to move the electrons by choosing a smarter expression for the transition probability.
@ -2729,8 +2729,8 @@ The algorithm of the previous exercise is only slighlty modified as:
</ol> </ol>
</div> </div>
<div id="outline-container-org868c86a" class="outline-4"> <div id="outline-container-org267d6c4" class="outline-4">
<h4 id="org868c86a"><span class="section-number-4">3.4.1</span> Gaussian random number generator</h4> <h4 id="org267d6c4"><span class="section-number-4">3.4.1</span> Gaussian random number generator</h4>
<div class="outline-text-4" id="text-3-4-1"> <div class="outline-text-4" id="text-3-4-1">
<p> <p>
To obtain Gaussian-distributed random numbers, you can apply the To obtain Gaussian-distributed random numbers, you can apply the
@ -2794,8 +2794,8 @@ In Python, you can use the <a href="https://numpy.org/doc/stable/reference/rando
</div> </div>
<div id="outline-container-org3da25b4" class="outline-4"> <div id="outline-container-org3a1bc00" class="outline-4">
<h4 id="org3da25b4"><span class="section-number-4">3.4.2</span> Exercise 1</h4> <h4 id="org3a1bc00"><span class="section-number-4">3.4.2</span> Exercise 1</h4>
<div class="outline-text-4" id="text-3-4-2"> <div class="outline-text-4" id="text-3-4-2">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -2837,8 +2837,8 @@ Write a function to compute the drift vector \(\frac{\nabla \Psi(\mathbf{r})}{\P
</div> </div>
</div> </div>
<div id="outline-container-orgdaf9219" class="outline-5"> <div id="outline-container-orgbedbe5e" class="outline-5">
<h5 id="orgdaf9219"><span class="section-number-5">3.4.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="orgbedbe5e"><span class="section-number-5">3.4.2.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-3-4-2-1"> <div class="outline-text-5" id="text-3-4-2-1">
<p> <p>
<b>Python</b> <b>Python</b>
@ -2871,8 +2871,8 @@ Write a function to compute the drift vector \(\frac{\nabla \Psi(\mathbf{r})}{\P
</div> </div>
</div> </div>
<div id="outline-container-org5a4e90b" class="outline-4"> <div id="outline-container-orgd524514" class="outline-4">
<h4 id="org5a4e90b"><span class="section-number-4">3.4.3</span> Exercise 2</h4> <h4 id="orgd524514"><span class="section-number-4">3.4.3</span> Exercise 2</h4>
<div class="outline-text-4" id="text-3-4-3"> <div class="outline-text-4" id="text-3-4-3">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -2968,8 +2968,8 @@ Modify the previous program to introduce the drift-diffusion scheme.
</div> </div>
</div> </div>
<div id="outline-container-orgb2b31bc" class="outline-5"> <div id="outline-container-orgd930b45" class="outline-5">
<h5 id="orgb2b31bc"><span class="section-number-5">3.4.3.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="orgd930b45"><span class="section-number-5">3.4.3.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-3-4-3-1"> <div class="outline-text-5" id="text-3-4-3-1">
<p> <p>
<b>Python</b> <b>Python</b>
@ -3157,12 +3157,26 @@ A = 0.62037333333333333 +/- 4.8970160591451110E-004
</div> </div>
</div> </div>
<div id="outline-container-orgefd778a" class="outline-2"> <div id="outline-container-orgd485152" class="outline-2">
<h2 id="orgefd778a"><span class="section-number-2">4</span> Diffusion Monte Carlo&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h2> <h2 id="orgd485152"><span class="section-number-2">4</span> Diffusion Monte Carlo&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h2>
<div class="outline-text-2" id="text-4"> <div class="outline-text-2" id="text-4">
<p>
As we have seen, Variational Monte Carlo is a powerful method to
compute integrals in large dimensions. It is often used in cases
where the expression of the wave function is such that the integrals
can't be evaluated (multi-centered Slater-type orbitals, correlation
factors, etc).
</p>
<p>
Diffusion Monte Carlo is different. It goes beyond the computation
of the integrals associated with an input wave function, and aims at
finding a near-exact numerical solution to the Schrödinger equation.
</p>
</div> </div>
<div id="outline-container-org481ff44" class="outline-3">
<h3 id="org481ff44"><span class="section-number-3">4.1</span> Schrödinger equation in imaginary time</h3> <div id="outline-container-org1b239e1" class="outline-3">
<h3 id="org1b239e1"><span class="section-number-3">4.1</span> Schrödinger equation in imaginary time</h3>
<div class="outline-text-3" id="text-4-1"> <div class="outline-text-3" id="text-4-1">
<p> <p>
Consider the time-dependent Schrödinger equation: Consider the time-dependent Schrödinger equation:
@ -3230,59 +3244,38 @@ system.
</div> </div>
</div> </div>
<div id="outline-container-orgc28941f" class="outline-3"> <div id="outline-container-org3dbb265" class="outline-3">
<h3 id="orgc28941f"><span class="section-number-3">4.2</span> Diffusion and branching</h3> <h3 id="org3dbb265"><span class="section-number-3">4.2</span> Relation to diffusion</h3>
<div class="outline-text-3" id="text-4-2"> <div class="outline-text-3" id="text-4-2">
<p> <p>
The imaginary-time Schrödinger equation can be explicitly written in terms of the kinetic and The <a href="https://en.wikipedia.org/wiki/Diffusion_equation">diffusion equation</a> of particles is given by
potential energies as
</p> </p>
<p> <p>
\[ \[
\frac{\partial \psi(\mathbf{r}, \tau)}{\partial \tau} = \left(\frac{1}{2}\Delta - [V(\mathbf{r}) -E_{\rm ref}]\right) \psi(\mathbf{r}, \tau)\,. \frac{\partial \psi(\mathbf{r},t)}{\partial t} = D\, \Delta \psi(\mathbf{r},t)
\] \]
</p> </p>
<p> <p>
We can simulate this differential equation as a diffusion-branching process. where \(D\) is the diffusion coefficient. When the imaginary-time
</p> Schrödinger equation is written in terms of the kinetic energy and
potential,
<p>
To see this, recall that the <a href="https://en.wikipedia.org/wiki/Diffusion_equation">diffusion equation</a> of particles is given by
</p> </p>
<p> <p>
\[ \[
\frac{\partial \psi(\mathbf{r},t)}{\partial t} = D\, \Delta \psi(\mathbf{r},t). \frac{\partial \psi(\mathbf{r}, \tau)}{\partial \tau} =
\left(\frac{1}{2}\Delta - [V(\mathbf{r}) -E_{\rm ref}]\right) \psi(\mathbf{r}, \tau)\,,
\] \]
</p> </p>
<p> <p>
Furthermore, the <a href="https://en.wikipedia.org/wiki/Reaction_rate">rate of reaction</a> \(v\) is the speed at which a chemical reaction it can be identified as the combination of:
takes place. In a solution, the rate is given as a function of the
concentration \([A]\) by
</p>
<p>
\[
v = \frac{d[A]}{dt},
\]
</p>
<p>
where the concentration \([A]\) is proportional to the number of particles.
</p>
<p>
These two equations allow us to interpret the Schrödinger equation
in imaginary time as the combination of:
</p> </p>
<ul class="org-ul"> <ul class="org-ul">
<li>a diffusion equation with a diffusion coefficient \(D=1/2\) for the <li>a diffusion equation (Laplacian)</li>
kinetic energy, and</li> <li>an equation whose solution is an exponential (potential)</li>
<li>a rate equation for the potential.</li>
</ul> </ul>
<p> <p>
@ -3294,16 +3287,12 @@ The diffusion equation can be simulated by a Brownian motion:
</p> </p>
<p> <p>
where \(\chi\) is a Gaussian random variable, and the rate equation where \(\chi\) is a Gaussian random variable, and the potential term
can be simulated by creating or destroying particles over time (a can be simulated by creating or destroying particles over time (a
so-called branching process). so-called branching process) or by simply considering it as a
cumulative multiplicative weight along the diffusion trajectory.
</p> </p>
<p>
In <i>Diffusion Monte Carlo</i> (DMC), one onbtains the ground state of a
system by simulating the Schrödinger equation in imaginary time via
the combination of a diffusion process and a branching process.
</p>
<p> <p>
We note that the ground-state wave function of a Fermionic system is We note that the ground-state wave function of a Fermionic system is
@ -3319,7 +3308,8 @@ For the systems you will study, this is not an issue:
<ul class="org-ul"> <ul class="org-ul">
<li>Hydrogen atom: You only have one electron!</li> <li>Hydrogen atom: You only have one electron!</li>
<li>Two-electron system (\(H_2\) or He): The ground-wave function is antisymmetric in the spin variables but symmetric in the space ones.</li> <li>Two-electron system (\(H_2\) or He): The ground-wave function is
antisymmetric in the spin variables but symmetric in the space ones.</li>
</ul> </ul>
<p> <p>
@ -3328,15 +3318,14 @@ Therefore, in both cases, you are dealing with a "Bosonic" ground state.
</div> </div>
</div> </div>
<div id="outline-container-org19f6b36" class="outline-3"> <div id="outline-container-org295d821" class="outline-3">
<h3 id="org19f6b36"><span class="section-number-3">4.3</span> Importance sampling</h3> <h3 id="org295d821"><span class="section-number-3">4.3</span> Importance sampling</h3>
<div class="outline-text-3" id="text-4-3"> <div class="outline-text-3" id="text-4-3">
<p> <p>
In a molecular system, the potential is far from being constant In a molecular system, the potential is far from being constant
and, in fact, diverges at the inter-particle coalescence points. Hence, when the and, in fact, diverges at the inter-particle coalescence points. Hence,
rate equation is simulated, it results in very large fluctuations it results in very large fluctuations of the term associated with
in the numbers of particles, making the calculations impossible in the potental, making the calculations impossible in practice.
practice.
Fortunately, if we multiply the Schrödinger equation by a chosen Fortunately, if we multiply the Schrödinger equation by a chosen
<i>trial wave function</i> \(\Psi_T(\mathbf{r})\) (Hartree-Fock, Kohn-Sham <i>trial wave function</i> \(\Psi_T(\mathbf{r})\) (Hartree-Fock, Kohn-Sham
determinant, CI wave function, <i>etc</i>), one obtains determinant, CI wave function, <i>etc</i>), one obtains
@ -3366,8 +3355,8 @@ Defining \(\Pi(\mathbf{r},\tau) = \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r})\), (s
The new "kinetic energy" can be simulated by the drift-diffusion The new "kinetic energy" can be simulated by the drift-diffusion
scheme presented in the previous section (VMC). scheme presented in the previous section (VMC).
The new "potential" is the local energy, which has smaller fluctuations The new "potential" is the local energy, which has smaller fluctuations
when \(\Psi_T\) gets closer to the exact wave function. This term can be simulated by when \(\Psi_T\) gets closer to the exact wave function.
changing the number of particles according to \(\exp\left[ -\delta t\, This term can be simulated by t particles according to \(\exp\left[ -\delta t\,
\left(E_L(\mathbf{r}) - E_{\rm ref}\right)\right]\) \left(E_L(\mathbf{r}) - E_{\rm ref}\right)\right]\)
where \(E_{\rm ref}\) is the constant we had introduced above, which is adjusted to where \(E_{\rm ref}\) is the constant we had introduced above, which is adjusted to
the running average energy to keep the number of particles the running average energy to keep the number of particles
@ -3425,8 +3414,8 @@ energies computed with the trial wave function.
</p> </p>
</div> </div>
<div id="outline-container-orgd63eaab" class="outline-4"> <div id="outline-container-orgd2e16c4" class="outline-4">
<h4 id="orgd63eaab"><span class="section-number-4">4.3.1</span> Appendix : Details of the Derivation</h4> <h4 id="orgd2e16c4"><span class="section-number-4">4.3.1</span> Appendix : Details of the Derivation</h4>
<div class="outline-text-4" id="text-4-3-1"> <div class="outline-text-4" id="text-4-3-1">
<p> <p>
\[ \[
@ -3487,8 +3476,8 @@ Defining \(\Pi(\mathbf{r},t) = \psi(\mathbf{r},\tau)
</div> </div>
</div> </div>
<div id="outline-container-org498bc42" class="outline-3"> <div id="outline-container-org929363f" class="outline-3">
<h3 id="org498bc42"><span class="section-number-3">4.4</span> Pure Diffusion Monte Carlo (PDMC)</h3> <h3 id="org929363f"><span class="section-number-3">4.4</span> Pure Diffusion Monte Carlo (PDMC)</h3>
<div class="outline-text-3" id="text-4-4"> <div class="outline-text-3" id="text-4-4">
<p> <p>
Instead of having a variable number of particles to simulate the Instead of having a variable number of particles to simulate the
@ -3564,13 +3553,13 @@ code, so this is what we will do in the next section.
</div> </div>
</div> </div>
<div id="outline-container-org82aee19" class="outline-3"> <div id="outline-container-orgc31115c" class="outline-3">
<h3 id="org82aee19"><span class="section-number-3">4.5</span> Hydrogen atom</h3> <h3 id="orgc31115c"><span class="section-number-3">4.5</span> Hydrogen atom</h3>
<div class="outline-text-3" id="text-4-5"> <div class="outline-text-3" id="text-4-5">
</div> </div>
<div id="outline-container-org28fd5e4" class="outline-4"> <div id="outline-container-org5a87685" class="outline-4">
<h4 id="org28fd5e4"><span class="section-number-4">4.5.1</span> Exercise</h4> <h4 id="org5a87685"><span class="section-number-4">4.5.1</span> Exercise</h4>
<div class="outline-text-4" id="text-4-5-1"> <div class="outline-text-4" id="text-4-5-1">
<div class="exercise"> <div class="exercise">
<p> <p>
@ -3669,8 +3658,8 @@ energy of H for any value of \(a\).
</div> </div>
</div> </div>
<div id="outline-container-org89b211a" class="outline-5"> <div id="outline-container-orgb894c1f" class="outline-5">
<h5 id="org89b211a"><span class="section-number-5">4.5.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5> <h5 id="orgb894c1f"><span class="section-number-5">4.5.1.1</span> Solution&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-4-5-1-1"> <div class="outline-text-5" id="text-4-5-1-1">
<p> <p>
<b>Python</b> <b>Python</b>
@ -3888,8 +3877,8 @@ A = 0.98788066666666663 +/- 7.2889356133441110E-005
</div> </div>
<div id="outline-container-org3cb42a6" class="outline-3"> <div id="outline-container-orgecf180f" class="outline-3">
<h3 id="org3cb42a6"><span class="section-number-3">4.6</span> <span class="todo TODO">TODO</span> H<sub>2</sub></h3> <h3 id="orgecf180f"><span class="section-number-3">4.6</span> <span class="todo TODO">TODO</span> H<sub>2</sub></h3>
<div class="outline-text-3" id="text-4-6"> <div class="outline-text-3" id="text-4-6">
<p> <p>
We will now consider the H<sub>2</sub> molecule in a minimal basis composed of the We will now consider the H<sub>2</sub> molecule in a minimal basis composed of the
@ -3910,8 +3899,8 @@ the nuclei.
</div> </div>
<div id="outline-container-orgb2c8cf6" class="outline-2"> <div id="outline-container-org3878dc4" class="outline-2">
<h2 id="orgb2c8cf6"><span class="section-number-2">5</span> <span class="todo TODO">TODO</span> <code>[0/3]</code> Last things to do</h2> <h2 id="org3878dc4"><span class="section-number-2">5</span> <span class="todo TODO">TODO</span> <code>[0/3]</code> Last things to do</h2>
<div class="outline-text-2" id="text-5"> <div class="outline-text-2" id="text-5">
<ul class="org-ul"> <ul class="org-ul">
<li class="off"><code>[&#xa0;]</code> Give some hints of how much time is required for each section</li> <li class="off"><code>[&#xa0;]</code> Give some hints of how much time is required for each section</li>
@ -3925,8 +3914,8 @@ the H\(_2\) molecule at $R$=1.4010 bohr. Answer: 0.17406 a.u.</li>
</div> </div>
</div> </div>
<div id="outline-container-org43d0643" class="outline-2"> <div id="outline-container-org6887311" class="outline-2">
<h2 id="org43d0643"><span class="section-number-2">6</span> Schedule</h2> <h2 id="org6887311"><span class="section-number-2">6</span> Schedule</h2>
<div class="outline-text-2" id="text-6"> <div class="outline-text-2" id="text-6">
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
@ -3990,7 +3979,7 @@ the H\(_2\) molecule at $R$=1.4010 bohr. Answer: 0.17406 a.u.</li>
</div> </div>
<div id="postamble" class="status"> <div id="postamble" class="status">
<p class="author">Author: Anthony Scemama, Claudia Filippi</p> <p class="author">Author: Anthony Scemama, Claudia Filippi</p>
<p class="date">Created: 2021-02-02 Tue 16:05</p> <p class="date">Created: 2021-02-02 Tue 21:49</p>
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p> <p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
</div> </div>
</body> </body>