From 6a63c65a01d5d1012a544ddca1d72c8734698c1e Mon Sep 17 00:00:00 2001 From: Anthony Scemama Date: Tue, 26 Jan 2021 17:06:12 +0100 Subject: [PATCH] Starting DMC --- QMC.org | 35 +++++++++++++++++++++++++++++++++++ 1 file changed, 35 insertions(+) diff --git a/QMC.org b/QMC.org index c9a515c..397b9ea 100644 --- a/QMC.org +++ b/QMC.org @@ -1809,6 +1809,41 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis :header-args:f90: :tangle dmc.f90 :END: + + Consider the time-dependent Schrödinger equation: + + \[ + i\frac{\partial \Psi(\mathbf{r},t)}{\partial t} = \hat{H} \Psi(\mathbf{r},t) + \] + + We can expand $\Psi(\mathbf{r},0)$, in the basis of the eigenstates + of the time-independent Hamiltonian: + + \[ + \Psi(\mathbf{r},0) = \sum_k a_k\, \Phi_k(\mathbf{r}). + \] + + The solution of the Schrödinger equation at time $t$ is + + \[ + \Psi(\mathbf{r},t) = \sum_k a_k \exp \left( -i\, E_k\, t \right) \Phi_k(\mathbf{r}). + \] + + Now, let's replace the time variable $t$ by an imaginary time variable + $\tau=i\,t$, we obtain + + \[ + -\frac{\partial \psi(\mathbf{r}, t)}{\partial \tau} = \hat{H} \psi(\mathbf{r}, t) + \] + + where $\psi(\mathbf{r},\tau) = \Psi(\mathbf{r},-i\tau) = \Psi(\mathbf{r},t)$ + and + \[ + \psi(\mathbf{r},\tau) = \sum_k a_k \exp( -E_k\, \tau) \phi_k(\mathbf{r}). + \] + For large positive values of $\tau$, $\psi$ is dominated by the + $k=0$ term, namely the ground state. + ** TODO Hydrogen atom *** Exercise