diff --git a/QMC.org b/QMC.org index 097901c..84c662d 100644 --- a/QMC.org +++ b/QMC.org @@ -1424,13 +1424,13 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform The algorithm is summarized as follows: - 1) Compute $\Psi$ at a new position $\mathbf{r'} = \mathbf{r}_n + - \delta L\, \mathbf{u}$ - 2) Compute the ratio $A = \frac{\left|\Psi(\mathbf{r'})\right|^2}{\left|\Psi(\mathbf{r}_{n})\right|^2}$ - 3) Draw a uniform random number $v \in [0,1]$ - 4) if $v \le A$, accept the move : set $\mathbf{r}_{n+1} = \mathbf{r'}$ - 5) else, reject the move : set $\mathbf{r}_{n+1} = \mathbf{r}_n$ - 6) evaluate the local energy at $\mathbf{r}_{n+1}$ + 1) Evaluate the local energy at $\mathbf{r}_n$ and accumulate it + 2) Compute a new position $\mathbf{r'} = \mathbf{r}_n + \delta L\, \mathbf{u}$ + 3) Evaluate $\Psi(\mathbf{r}')$ at the new position + 4) Compute the ratio $A = \frac{\left|\Psi(\mathbf{r'})\right|^2}{\left|\Psi(\mathbf{r}_{n})\right|^2}$ + 5) Draw a uniform random number $v \in [0,1]$ + 6) if $v \le A$, accept the move : set $\mathbf{r}_{n+1} = \mathbf{r'}$ + 7) else, reject the move : set $\mathbf{r}_{n+1} = \mathbf{r}_n$ #+begin_note A common error is to remove the rejected samples from the @@ -1742,7 +1742,7 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_metropolis.f90 -o qmc_metropolis Furthermore, to sample the density even better, we can "push" the electrons into in the regions of high probability, and "pull" them away from - the low-probability regions. This will ncrease the + the low-probability regions. This will increase the acceptance ratios and improve the sampling. To do this, we can use the gradient of the probability density @@ -1761,7 +1761,7 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_metropolis.f90 -o qmc_metropolis \Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{2\,\delta t} \right]\,. \] - The corrsponding move is proposed as + The corresponding move is proposed as \[ \mathbf{r}_{n+1} = \mathbf{r}_{n} + \delta t\, \frac{\nabla @@ -1775,15 +1775,14 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_metropolis.f90 -o qmc_metropolis The algorithm of the previous exercise is only slighlty modified as: - 1) Compute a new position $\mathbf{r'} = \mathbf{r}_n + + 1) Evaluate the local energy at $\mathbf{r}_{n}$ and accumulate it + 2) Compute a new position $\mathbf{r'} = \mathbf{r}_n + \delta t\, \frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})} + \chi$ - - Evaluate $\Psi$ and $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$ at the new position - 2) Compute the ratio $A = \frac{T(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})}{T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})}$ - 3) Draw a uniform random number $v \in [0,1]$ - 4) if $v \le A$, accept the move : set $\mathbf{r}_{n+1} = \mathbf{r'}$ - 5) else, reject the move : set $\mathbf{r}_{n+1} = \mathbf{r}_n$ - 6) evaluate the local energy at $\mathbf{r}_{n+1}$ + 3) Evaluate $\Psi(\mathbf{r}')$ and $\frac{\nabla \Psi(\mathbf{r'})}{\Psi(\mathbf{r'})}$ at the new position + 4) Compute the ratio $A = \frac{T(\mathbf{r}' \rightarrow \mathbf{r}_{n}) P(\mathbf{r}')}{T(\mathbf{r}_{n} \rightarrow \mathbf{r}') P(\mathbf{r}_{n})}$ + 5) Draw a uniform random number $v \in [0,1]$ + 6) if $v \le A$, accept the move : set $\mathbf{r}_{n+1} = \mathbf{r'}$ + 7) else, reject the move : set $\mathbf{r}_{n+1} = \mathbf{r}_n$ *** Gaussian random number generator @@ -1840,6 +1839,11 @@ end subroutine random_gauss *** Exercise 1 + #+begin_exercise + If you use Fortran, copy/paste the ~random_gauss~ function in + a Fortran file. + #+end_exercise + #+begin_exercise Write a function to compute the drift vector $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$. #+end_exercise @@ -2014,13 +2018,13 @@ def MonteCarlo(a,nmax,dt): d2_old = d2_new psi_old = psi_new - return energy/nmax, accep_rate/nmax + return energy/nmax, N_accep/nmax # Run simulation a = 1.2 nmax = 100000 -dt = 1.3 +dt = 1.0 X0 = [ MonteCarlo(a,nmax,dt) for i in range(30)] @@ -2036,8 +2040,6 @@ print(f"A = {A} +/- {deltaA}") #+END_SRC #+RESULTS: - : E = -0.4951317910667116 +/- 0.00014045774335059988 - : A = 0.7200673333333333 +/- 0.00045942791345632793 *Fortran* #+BEGIN_SRC f90 @@ -2144,8 +2146,8 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis #+end_src #+RESULTS: - : E = -0.49497258331144794 +/- 1.0973395750688713E-004 - : A = 0.78839866666666658 +/- 3.2503783452043152E-004 + : E = -0.47940635575542706 +/- 5.5613594433433764E-004 + : A = 0.62037333333333333 +/- 4.8970160591451110E-004 * Diffusion Monte Carlo :solution: @@ -3099,4 +3101,5 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc | <2021-02-04 Thu 14:00-14:10> | 3.1 | | <2021-02-04 Thu 14:10-14:30> | 3.2 | | <2021-02-04 Thu 14:30-15:30> | 3.3 | + | <2021-02-04 Thu 15:30-16:30> | 3.4 | |------------------------------+---------| diff --git a/vmc_metropolis.py b/vmc_metropolis.py index 93cd5b6..2c4578b 100644 --- a/vmc_metropolis.py +++ b/vmc_metropolis.py @@ -45,7 +45,7 @@ def MonteCarlo(a,nmax,dt): # Run simulation a = 1.2 nmax = 100000 -dt = 1.3 +dt = 1.0 X0 = [ MonteCarlo(a,nmax,dt) for i in range(30)]