diff --git a/index.html b/index.html index d4476b5..e3c21b0 100644 --- a/index.html +++ b/index.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- +[0/3]
Last things to do[0/3]
Last things to doThis website contains the QMC tutorial of the 2021 LTTC winter school @@ -514,8 +514,8 @@ coordinates, etc).
For a given system with Hamiltonian \(\hat{H}\) and wave function \(\Psi\), we define the local energy as @@ -593,8 +593,8 @@ $$ E ≈ \frac{1}{M} ∑i=1M EL(\mathbf{r
In this section, we consider the hydrogen atom with the following @@ -623,8 +623,8 @@ To do that, we will compute the local energy and check whether it is constant.
You will now program all quantities needed to compute the local energy of the H atom for the given wave function. @@ -651,8 +651,8 @@ to catch the error.
@@ -696,8 +696,8 @@ and returns the potential.
Python @@ -737,8 +737,8 @@ and returns the potential.
@@ -773,8 +773,8 @@ input arguments, and returns a scalar.
Python @@ -801,8 +801,8 @@ input arguments, and returns a scalar.
@@ -848,12 +848,12 @@ applied to the wave function gives:
\[ - \Delta \Psi (\mathbf{r}) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \Psi(\mathbf{r}) + \Delta \Psi (\mathbf{r}) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \Psi(\mathbf{r})\,. \]
-So the local kinetic energy is +Therefore, the local kinetic energy is \[ -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \] @@ -883,8 +883,8 @@ So the local kinetic energy is
Python @@ -925,8 +925,8 @@ So the local kinetic energy is
@@ -969,8 +969,8 @@ local kinetic energy.
Python @@ -1000,8 +1000,8 @@ local kinetic energy.
@@ -1011,8 +1011,8 @@ Find the theoretical value of \(a\) for which \(\Psi\) is an eigenfunction of \(
@@ -1044,8 +1044,8 @@ choose a grid which does not contain the origin.
@@ -1128,8 +1128,8 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
Python @@ -1204,14 +1204,14 @@ plt.savefig("plot_py.png")
If the space is discretized in small volume elements \(\mathbf{r}_i\) of size \(\delta \mathbf{r}\), the expression of \(\langle E_L \rangle_{\Psi^2}\) becomes a weighted average of the local energy, where the weights -are the values of the probability density at \(\mathbf{r}_i\) +are the values of the wave function square at \(\mathbf{r}_i\) multiplied by the volume element:
@@ -1235,12 +1235,12 @@ The energy is biased because:-Compute a numerical estimate of the energy in a grid of +Compute a numerical estimate of the energy using a grid of \(50\times50\times50\) points in the range \((-5,-5,-5) \le \mathbf{r} \le (5,5,5)\).
@@ -1305,8 +1305,8 @@ To compile the Fortran and run it:Python @@ -1421,8 +1421,8 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002
The variance of the local energy is a functional of \(\Psi\) @@ -1449,8 +1449,8 @@ energy can be used as a measure of the quality of a wave function.
@@ -1461,8 +1461,8 @@ Prove that :
\(\bar{E} = \langle E \rangle\) is a constant, so \(\langle \bar{E} @@ -1481,13 +1481,13 @@ Prove that :
Add the calculation of the variance to the previous code, and -compute a numerical estimate of the variance of the local energy in +compute a numerical estimate of the variance of the local energy using a grid of \(50\times50\times50\) points in the range \((-5,-5,-5) \le \mathbf{r} \le (5,5,5)\) for different values of \(a\).
@@ -1556,8 +1556,8 @@ To compile and run:Python @@ -1694,8 +1694,8 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814
Numerical integration with deterministic methods is very efficient @@ -1711,8 +1711,8 @@ interval.
To compute the statistical error, you need to perform \(M\) @@ -1752,8 +1752,8 @@ And the confidence interval is given by
@@ -1791,8 +1791,8 @@ input array.
Python @@ -1851,8 +1851,8 @@ input array.
We will now do our first Monte Carlo calculation to compute the @@ -1886,8 +1886,8 @@ compute the statistical error.
@@ -1987,8 +1987,8 @@ well as the index of the current step.
Python @@ -2102,8 +2102,8 @@ E = -0.49518773675598715 +/- 5.2391494923686175E-004
We will now use the square of the wave function to sample random @@ -2191,8 +2191,8 @@ step such that the acceptance rate is close to 0.5 is a good compromise.
@@ -2299,8 +2299,8 @@ Can you observe a reduction in the statistical error?
Python @@ -2445,8 +2445,8 @@ A = 0.51695266666666673 +/- 4.0445505648997396E-004
To obtain Gaussian-distributed random numbers, you can apply the
@@ -2508,8 +2508,8 @@ In Python, you can use the
-
One can use more efficient numerical schemes to move the electrons,
@@ -2608,8 +2608,8 @@ The transition probability becomes:
@@ -2643,8 +2643,8 @@ Write a function to compute the drift vector \(\frac{\nabla \Psi(\mathbf{r})}{\P
Python
@@ -2677,8 +2677,8 @@ Write a function to compute the drift vector \(\frac{\nabla \Psi(\mathbf{r})}{\P
@@ -2772,8 +2772,8 @@ Modify the previous program to introduce the drifted diffusion scheme.
Python
@@ -2959,12 +2959,12 @@ A = 0.78839866666666658 +/- 3.2503783452043152E-004
Consider the time-dependent Schrödinger equation:
@@ -3023,8 +3023,8 @@ system.
The diffusion equation of particles is given by
@@ -3078,8 +3078,8 @@ the combination of a diffusion process and a branching process.
In a molecular system, the potential is far from being constant,
@@ -3136,8 +3136,8 @@ error known as the fixed node error.
\[
@@ -3199,8 +3199,8 @@ Defining \(\Pi(\mathbf{r},t) = \psi(\mathbf{r},\tau)
Now that we have a process to sample \(\Pi(\mathbf{r},\tau) =
@@ -3252,8 +3252,8 @@ energies computed with the trial wave function.
Instead of having a variable number of particles to simulate the
@@ -3305,13 +3305,13 @@ code, so this is what we will do in the next section.
@@ -3410,8 +3410,8 @@ energy of H for any value of \(a\).
Python
@@ -3627,8 +3627,8 @@ A = 0.98788066666666663 +/- 7.2889356133441110E-005
We will now consider the H2 molecule in a minimal basis composed of the
@@ -3649,8 +3649,8 @@ the nuclei.
3.5 Generalized Metropolis algorithm
+3.5 Generalized Metropolis algorithm
3.5.1 Exercise 1
+3.5.1 Exercise 1
3.5.1.1 Solution solution
+3.5.1.1 Solution solution
3.5.2 Exercise 2
+3.5.2 Exercise 2
3.5.2.1 Solution solution
+3.5.2.1 Solution solution
4 Diffusion Monte Carlo solution
+4 Diffusion Monte Carlo solution
4.1 Schrödinger equation in imaginary time
+4.1 Schrödinger equation in imaginary time
4.2 Diffusion and branching
+4.2 Diffusion and branching
4.3 Importance sampling
+4.3 Importance sampling
4.3.1 Appendix : Details of the Derivation
+4.3.1 Appendix : Details of the Derivation
4.4 Fixed-node DMC energy
+4.4 Fixed-node DMC energy
4.5 Pure Diffusion Monte Carlo (PDMC)
+4.5 Pure Diffusion Monte Carlo (PDMC)
4.6 Hydrogen atom
+4.6 Hydrogen atom
4.6.1 Exercise
+4.6.1 Exercise
4.6.1.1 Solution solution
+4.6.1.1 Solution solution
4.7 TODO H2
+4.7 TODO H2
5 TODO
+[0/3]
Last things to do5 TODO
[0/3]
Last things to do
[ ]
Give some hints of how much time is required for each section