1
0
mirror of https://github.com/TREX-CoE/qmc-lttc.git synced 2024-12-21 11:53:58 +01:00

Gaussian sampling

This commit is contained in:
Anthony Scemama 2021-01-07 11:07:18 +01:00
parent 8594cdfa39
commit 45bdaf2d41
6 changed files with 516 additions and 392 deletions

690
QMC.org
View File

@ -6,185 +6,185 @@
* Introduction
We propose different exercises to understand quantum Monte Carlo (QMC)
methods. In the first section, we propose to compute the energy of a
hydrogen atom using numerical integration. The goal of this section is
to introduce the /local energy/.
Then we introduce the variational Monte Carlo (VMC) method which
computes a statistical estimate of the expectation value of the energy
associated with a given wave function.
Finally, we introduce the diffusion Monte Carlo (DMC) method which
gives the exact energy of the H$_2$ molecule.
We propose different exercises to understand quantum Monte Carlo (QMC)
methods. In the first section, we propose to compute the energy of a
hydrogen atom using numerical integration. The goal of this section is
to introduce the /local energy/.
Then we introduce the variational Monte Carlo (VMC) method which
computes a statistical estimate of the expectation value of the energy
associated with a given wave function.
Finally, we introduce the diffusion Monte Carlo (DMC) method which
gives the exact energy of the H$_2$ molecule.
Code examples will be given in Python and Fortran. Whatever language
can be chosen.
Code examples will be given in Python and Fortran. Whatever language
can be chosen.
** Python
** Fortran
- 1.d0
- external
- r(:) = 0.d0
- a = (/ 0.1, 0.2 /)
- size(x)
- 1.d0
- external
- r(:) = 0.d0
- a = (/ 0.1, 0.2 /)
- size(x)
* Numerical evaluation of the energy
In this section we consider the Hydrogen atom with the following
wave function:
In this section we consider the Hydrogen atom with the following
wave function:
$$
\Psi(\mathbf{r}) = \exp(-a |\mathbf{r}|)
$$
$$
\Psi(\mathbf{r}) = \exp(-a |\mathbf{r}|)
$$
We will first verify that $\Psi$ is an eigenfunction of the Hamiltonian
We will first verify that $\Psi$ is an eigenfunction of the Hamiltonian
$$
\hat{H} = \hat{T} + \hat{V} = - \frac{1}{2} \Delta - \frac{1}{|\mathbf{r}|}
$$
$$
\hat{H} = \hat{T} + \hat{V} = - \frac{1}{2} \Delta - \frac{1}{|\mathbf{r}|}
$$
when $a=1$, by checking that $\hat{H}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$ for
all $\mathbf{r}$: we will check that the local energy, defined as
when $a=1$, by checking that $\hat{H}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$ for
all $\mathbf{r}$: we will check that the local energy, defined as
$$
E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})},
$$
$$
E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})},
$$
is constant.
is constant.
** Local energy
:PROPERTIES:
:header-args:python: :tangle hydrogen.py
:header-args:f90: :tangle hydrogen.f90
:END:
:PROPERTIES:
:header-args:python: :tangle hydrogen.py
:header-args:f90: :tangle hydrogen.f90
:END:
*** Write a function which computes the potential at $\mathbf{r}$
The function accepts a 3-dimensional vector =r= as input arguments
and returns the potential.
The function accepts a 3-dimensional vector =r= as input arguments
and returns the potential.
$\mathbf{r}=\sqrt{x^2 + y^2 + z^2})$, so
$$
V(x,y,z) = -\frac{1}{\sqrt{x^2 + y^2 + z^2})$
$$
$\mathbf{r}=\sqrt{x^2 + y^2 + z^2})$, so
$$
V(x,y,z) = -\frac{1}{\sqrt{x^2 + y^2 + z^2})$
$$
#+BEGIN_SRC python :results none
#+BEGIN_SRC python :results none
import numpy as np
def potential(r):
return -1. / np.sqrt(np.dot(r,r))
#+END_SRC
#+END_SRC
#+BEGIN_SRC f90
#+BEGIN_SRC f90
double precision function potential(r)
implicit none
double precision, intent(in) :: r(3)
potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
end function potential
#+END_SRC
#+END_SRC
*** Write a function which computes the wave function at $\mathbf{r}$
The function accepts a scalar =a= and a 3-dimensional vector =r= as
input arguments, and returns a scalar.
The function accepts a scalar =a= and a 3-dimensional vector =r= as
input arguments, and returns a scalar.
#+BEGIN_SRC python :results none
#+BEGIN_SRC python :results none
def psi(a, r):
return np.exp(-a*np.sqrt(np.dot(r,r)))
#+END_SRC
#+END_SRC
#+BEGIN_SRC f90
#+BEGIN_SRC f90
double precision function psi(a, r)
implicit none
double precision, intent(in) :: a, r(3)
psi = dexp(-a * dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
end function psi
#+END_SRC
#+END_SRC
*** Write a function which computes the local kinetic energy at $\mathbf{r}$
The function accepts =a= and =r= as input arguments and returns the
local kinetic energy.
The function accepts =a= and =r= as input arguments and returns the
local kinetic energy.
The local kinetic energy is defined as $$-\frac{1}{2}\frac{\Delta \Psi}{\Psi}$$.
The local kinetic energy is defined as $$-\frac{1}{2}\frac{\Delta \Psi}{\Psi}$$.
$$
\Psi(x,y,z) = \exp(-a\,\sqrt{x^2 + y^2 + z^2}).
$$
$$
\Psi(x,y,z) = \exp(-a\,\sqrt{x^2 + y^2 + z^2}).
$$
We differentiate $\Psi$ with respect to $x$:
We differentiate $\Psi$ with respect to $x$:
$$
\frac{\partial \Psi}{\partial x}
= \frac{\partial \Psi}{\partial r} \frac{\partial r}{\partial x}
= - \frac{a\,x}{|\mathbf{r}|} \Psi(x,y,z)
$$
$$
\frac{\partial \Psi}{\partial x}
= \frac{\partial \Psi}{\partial r} \frac{\partial r}{\partial x}
= - \frac{a\,x}{|\mathbf{r}|} \Psi(x,y,z)
$$
and we differentiate a second time:
and we differentiate a second time:
$$
\frac{\partial^2 \Psi}{\partial x^2} =
\left( \frac{a^2\,x^2}{|\mathbf{r}|^2} - \frac{a(y^2+z^2)}{|\mathbf{r}|^{3}} \right) \Psi(x,y,z).
$$
$$
\frac{\partial^2 \Psi}{\partial x^2} =
\left( \frac{a^2\,x^2}{|\mathbf{r}|^2} - \frac{a(y^2+z^2)}{|\mathbf{r}|^{3}} \right) \Psi(x,y,z).
$$
The Laplacian operator $\Delta = \frac{\partial^2}{\partial x^2} +
\frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$
applied to the wave function gives:
The Laplacian operator $\Delta = \frac{\partial^2}{\partial x^2} +
\frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$
applied to the wave function gives:
$$
\Delta \Psi (x,y,z) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \Psi(x,y,z)
$$
$$
\Delta \Psi (x,y,z) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \Psi(x,y,z)
$$
So the local kinetic energy is
$$
-\frac{1}{2} \frac{\Delta \Psi}{\Psi} (x,y,z) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right)
$$
So the local kinetic energy is
$$
-\frac{1}{2} \frac{\Delta \Psi}{\Psi} (x,y,z) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right)
$$
#+BEGIN_SRC python :results none
#+BEGIN_SRC python :results none
def kinetic(a,r):
return -0.5 * (a**2 - (2.*a)/np.sqrt(np.dot(r,r)))
#+END_SRC
#+END_SRC
#+BEGIN_SRC f90
#+BEGIN_SRC f90
double precision function kinetic(a,r)
implicit none
double precision, intent(in) :: a, r(3)
kinetic = -0.5d0 * (a*a - (2.d0*a) / &
dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) )
end function kinetic
#+END_SRC
#+END_SRC
*** Write a function which computes the local energy at $\mathbf{r}$
The function accepts =x,y,z= as input arguments and returns the
local energy.
The function accepts =x,y,z= as input arguments and returns the
local energy.
$$
E_L(x,y,z) = -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (x,y,z) + V(x,y,z)
$$
$$
E_L(x,y,z) = -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (x,y,z) + V(x,y,z)
$$
#+BEGIN_SRC python :results none
#+BEGIN_SRC python :results none
def e_loc(a,r):
return kinetic(a,r) + potential(r)
#+END_SRC
#+END_SRC
#+BEGIN_SRC f90
#+BEGIN_SRC f90
double precision function e_loc(a,r)
implicit none
double precision, intent(in) :: a, r(3)
double precision, external :: kinetic, potential
e_loc = kinetic(a,r) + potential(r)
end function e_loc
#+END_SRC
#+END_SRC
** Plot the local energy along the x axis
:PROPERTIES:
:header-args:python: :tangle plot_hydrogen.py
:header-args:f90: :tangle plot_hydrogen.f90
:END:
:PROPERTIES:
:header-args:python: :tangle plot_hydrogen.py
:header-args:f90: :tangle plot_hydrogen.f90
:END:
For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the
local energy along the $x$ axis.
For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the
local energy along the $x$ axis.
#+begin_src python :results output
#+begin_src python :results output
import numpy as np
import matplotlib.pyplot as plt
@ -206,14 +206,14 @@ plt.tight_layout()
plt.legend()
plt.savefig("plot_py.png")
#+end_src
#+end_src
#+RESULTS:
#+RESULTS:
[[./plot_py.png]]
[[./plot_py.png]]
#+begin_src f90
#+begin_src f90
program plot
implicit none
double precision, external :: e_loc
@ -242,20 +242,20 @@ program plot
end do
end program plot
#+end_src
#+end_src
To compile and run:
To compile and run:
#+begin_src sh :exports both
#+begin_src sh :exports both
gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen
./plot_hydrogen > data
#+end_src
#+end_src
#+RESULTS:
#+RESULTS:
To plot the data using gnuplot"
To plot the data using gnuplot"
#+begin_src gnuplot :file plot.png :exports both
#+begin_src gnuplot :file plot.png :exports both
set grid
set xrange [-5:5]
set yrange [-2:1]
@ -265,39 +265,39 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
'./data' index 3 using 1:2 with lines title 'a=1.0', \
'./data' index 4 using 1:2 with lines title 'a=1.5', \
'./data' index 5 using 1:2 with lines title 'a=2.0'
#+end_src
#+end_src
#+RESULTS:
[[file:plot.png]]
#+RESULTS:
[[file:plot.png]]
** Compute numerically the average energy
:PROPERTIES:
:header-args:python: :tangle energy_hydrogen.py
:header-args:f90: :tangle energy_hydrogen.f90
:END:
:PROPERTIES:
:header-args:python: :tangle energy_hydrogen.py
:header-args:f90: :tangle energy_hydrogen.f90
:END:
We want to compute
We want to compute
\begin{eqnarray}
E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle} \\
\begin{eqnarray}
E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle} \\
& = & \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\
& = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
\end{eqnarray}
\end{eqnarray}
If the space is discretized in small volume elements $\delta
\mathbf{r}$, this last equation corresponds to a weighted average of
the local energy, where the weights are the values of the square of
the wave function at $\mathbf{r}$ multiplied by the volume element:
If the space is discretized in small volume elements $\delta
\mathbf{r}$, this last equation corresponds to a weighted average of
the local energy, where the weights are the values of the square of
the wave function at $\mathbf{r}$ multiplied by the volume element:
$$
E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta \mathbf{r}
$$
$$
E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta \mathbf{r}
$$
We now compute an numerical estimate of the energy in a grid of
$50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$.
We now compute an numerical estimate of the energy in a grid of
$50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$.
Note: the energy is biased because:
Note: the energy is biased because:
- The energy is evaluated only inside the box
- The volume elements are not infinitely small
@ -305,12 +305,12 @@ Note: the energy is biased because:
import numpy as np
from hydrogen import e_loc, psi
interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3
interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3
r = np.array([0.,0.,0.])
r = np.array([0.,0.,0.])
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
E = 0.
norm = 0.
for x in interval:
@ -338,7 +338,7 @@ for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
: a = 2.0 E = -0.08086980667844901
#+begin_src f90
#+begin_src f90
program energy_hydrogen
implicit none
double precision, external :: e_loc, psi
@ -378,43 +378,43 @@ program energy_hydrogen
end do
end program energy_hydrogen
#+end_src
#+end_src
To compile and run:
To compile and run:
#+begin_src sh :results output :exports both
#+begin_src sh :results output :exports both
gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
./energy_hydrogen
#+end_src
#+end_src
#+RESULTS:
: a = 0.10000000000000001 E = -0.24518438948809140
: a = 0.20000000000000001 E = -0.26966057967803236
: a = 0.50000000000000000 E = -0.38563576125173815
: a = 1.0000000000000000 E = -0.50000000000000000
: a = 1.5000000000000000 E = -0.39242967082602065
: a = 2.0000000000000000 E = -8.0869806678448772E-002
#+RESULTS:
: a = 0.10000000000000001 E = -0.24518438948809140
: a = 0.20000000000000001 E = -0.26966057967803236
: a = 0.50000000000000000 E = -0.38563576125173815
: a = 1.0000000000000000 E = -0.50000000000000000
: a = 1.5000000000000000 E = -0.39242967082602065
: a = 2.0000000000000000 E = -8.0869806678448772E-002
** Compute the variance of the local energy
:PROPERTIES:
:header-args:python: :tangle variance_hydrogen.py
:header-args:f90: :tangle variance_hydrogen.f90
:END:
:PROPERTIES:
:header-args:python: :tangle variance_hydrogen.py
:header-args:f90: :tangle variance_hydrogen.f90
:END:
The variance of the local energy measures the magnitude of the
fluctuations of the local energy around the average. If the local
energy is constant (i.e. $\Psi$ is an eigenfunction of $\hat{H}$)
the variance is zero.
The variance of the local energy measures the magnitude of the
fluctuations of the local energy around the average. If the local
energy is constant (i.e. $\Psi$ is an eigenfunction of $\hat{H}$)
the variance is zero.
$$
\sigma^2(E_L) = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \left[
E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
$$
$$
\sigma^2(E_L) = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \left[
E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
$$
Compute a numerical estimate of the variance of the local energy
in a grid of $50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$.
Compute a numerical estimate of the variance of the local energy
in a grid of $50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$.
#+BEGIN_SRC python :results output :exports both
#+BEGIN_SRC python :results output :exports both
import numpy as np
from hydrogen import e_loc, psi
@ -452,18 +452,18 @@ for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
s2 = s2 / norm
print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}")
#+end_src
#+end_src
#+RESULTS:
: a = 0.1 E = -0.24518439 \sigma^2 = 0.02696522
: a = 0.2 E = -0.26966058 \sigma^2 = 0.03719707
: a = 0.5 E = -0.38563576 \sigma^2 = 0.05318597
: a = 0.9 E = -0.49435710 \sigma^2 = 0.00577812
: a = 1.0 E = -0.50000000 \sigma^2 = 0.00000000
: a = 1.5 E = -0.39242967 \sigma^2 = 0.31449671
: a = 2.0 E = -0.08086981 \sigma^2 = 1.80688143
#+RESULTS:
: a = 0.1 E = -0.24518439 \sigma^2 = 0.02696522
: a = 0.2 E = -0.26966058 \sigma^2 = 0.03719707
: a = 0.5 E = -0.38563576 \sigma^2 = 0.05318597
: a = 0.9 E = -0.49435710 \sigma^2 = 0.00577812
: a = 1.0 E = -0.50000000 \sigma^2 = 0.00000000
: a = 1.5 E = -0.39242967 \sigma^2 = 0.31449671
: a = 2.0 E = -0.08086981 \sigma^2 = 1.80688143
#+begin_src f90
#+begin_src f90
program variance_hydrogen
implicit none
double precision, external :: e_loc, psi
@ -521,69 +521,68 @@ program variance_hydrogen
end do
end program variance_hydrogen
#+end_src
#+end_src
To compile and run:
To compile and run:
#+begin_src sh :results output :exports both
#+begin_src sh :results output :exports both
gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
./variance_hydrogen
#+end_src
#+end_src
#+RESULTS:
: a = 0.10000000000000001 E = -0.24518438948809140 s2 = 2.6965218719733813E-002
: a = 0.20000000000000001 E = -0.26966057967803236 s2 = 3.7197072370217653E-002
: a = 0.50000000000000000 E = -0.38563576125173815 s2 = 5.3185967578488862E-002
: a = 1.0000000000000000 E = -0.50000000000000000 s2 = 0.0000000000000000
: a = 1.5000000000000000 E = -0.39242967082602065 s2 = 0.31449670909180444
: a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814270851303
#+RESULTS:
: a = 0.10000000000000001 E = -0.24518438948809140 s2 = 2.6965218719733813E-002
: a = 0.20000000000000001 E = -0.26966057967803236 s2 = 3.7197072370217653E-002
: a = 0.50000000000000000 E = -0.38563576125173815 s2 = 5.3185967578488862E-002
: a = 1.0000000000000000 E = -0.50000000000000000 s2 = 0.0000000000000000
: a = 1.5000000000000000 E = -0.39242967082602065 s2 = 0.31449670909180444
: a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814270851303
* Variational Monte Carlo
Instead of computing the average energy as a numerical integration
on a grid, we will do a Monte Carlo sampling, which is an extremely
efficient method to compute integrals when the number of dimensions is
large.
Moreover, a Monte Carlo sampling will alow us to remove the bias due
to the discretization of space, and compute a statistical confidence
interval.
Instead of computing the average energy as a numerical integration
on a grid, we will do a Monte Carlo sampling, which is an extremely
efficient method to compute integrals when the number of dimensions is
large.
Moreover, a Monte Carlo sampling will alow us to remove the bias due
to the discretization of space, and compute a statistical confidence
interval.
** Computation of the statistical error
:PROPERTIES:
:header-args:python: :tangle qmc_stats.py
:header-args:f90: :tangle qmc_stats.f90
:END:
:PROPERTIES:
:header-args:python: :tangle qmc_stats.py
:header-args:f90: :tangle qmc_stats.f90
:END:
To compute the statistical error, you need to perform $M$
independent Monte Carlo calculations. You will obtain $M$ different
estimates of the energy, which are expected to have a Gaussian
distribution by the central limit theorem.
To compute the statistical error, you need to perform $M$
independent Monte Carlo calculations. You will obtain $M$ different
estimates of the energy, which are expected to have a Gaussian
distribution by the central limit theorem.
The estimate of the energy is
The estimate of the energy is
$$
E = \frac{1}{M} \sum_{i=1}^M E_M
$$
$$
E = \frac{1}{M} \sum_{i=1}^M E_M
$$
The variance of the average energies can be computed as
The variance of the average energies can be computed as
$$
\sigma^2 = \frac{1}{M-1} \sum_{i=1}^{M} (E_M - E)^2
$$
$$
\sigma^2 = \frac{1}{M-1} \sum_{i=1}^{M} (E_M - E)^2
$$
And the confidence interval is given by
And the confidence interval is given by
$$
E \pm \delta E, \text{ where } \delta E = \frac{\sigma}{\sqrt{M}}
$$
$$
E \pm \delta E, \text{ where } \delta E = \frac{\sigma}{\sqrt{M}}
$$
Write a function returning the average and statistical error of an
input array.
Write a function returning the average and statistical error of an
input array.
#+BEGIN_SRC python
#+BEGIN_SRC python
from math import sqrt
def ave_error(arr):
M = len(arr)
@ -591,9 +590,9 @@ def ave_error(arr):
average = sum(arr)/M
variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] )
return (average, sqrt(variance/M))
#+END_SRC
#+END_SRC
#+BEGIN_SRC f90
#+BEGIN_SRC f90
subroutine ave_error(x,n,ave,err)
implicit none
integer, intent(in) :: n
@ -609,23 +608,23 @@ subroutine ave_error(x,n,ave,err)
err = dsqrt(variance/dble(n))
endif
end subroutine ave_error
#+END_SRC
#+END_SRC
** Uniform sampling in the box
:PROPERTIES:
:header-args:python: :tangle qmc_uniform.py
:header-args:f90: :tangle qmc_uniform.f90
:END:
:PROPERTIES:
:header-args:python: :tangle qmc_uniform.py
:header-args:f90: :tangle qmc_uniform.f90
:END:
In this section we write a function to perform a Monte Carlo
calculation of the average energy.
At every Monte Carlo step:
In this section we write a function to perform a Monte Carlo
calculation of the average energy.
At every Monte Carlo step:
- Draw 3 uniform random numbers in the interval $(-5,-5,-5) \le
- Draw 3 uniform random numbers in the interval $(-5,-5,-5) \le
(x,y,z) \le (5,5,5)$
- Compute $\Psi^2 \times E_L$ at this point and accumulate the
- Compute $\Psi^2 \times E_L$ at this point and accumulate the
result in E
- Compute $\Psi^2$ at this point and accumulate the result in N
- Compute $\Psi^2$ at this point and accumulate the result in N
Once all the steps have been computed, return the average energy
computed on the Monte Carlo calculation.
@ -635,12 +634,11 @@ At every Monte Carlo step:
Compute the energy of the wave function with $a=0.9$.
#+BEGIN_SRC python :results output
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a, nmax):
def MonteCarlo(a, nmax):
E = 0.
N = 0.
for istep in range(nmax):
@ -651,17 +649,17 @@ def MonteCarlo(a, nmax):
E += w * e_loc(a,r)
return E/N
a = 0.9
nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
a = 0.9
nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
#+END_SRC
#+RESULTS:
: E = -0.4956255109300764 +/- 0.0007082875482711226
#+BEGIN_SRC f90
#+BEGIN_SRC f90
subroutine uniform_montecarlo(a,nmax,energy)
implicit none
double precision, intent(in) :: a
@ -703,50 +701,93 @@ program qmc
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
end program qmc
#+END_SRC
#+END_SRC
#+begin_src sh :results output :exports both
#+begin_src sh :results output :exports both
gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
./qmc_uniform
#+end_src
#+end_src
#+RESULTS:
: E = -0.49588321986667677 +/- 7.1758863546737969E-004
#+RESULTS:
: E = -0.49588321986667677 +/- 7.1758863546737969E-004
** Gaussian sampling
:PROPERTIES:
:header-args:python: :tangle qmc_gaussian.py
:header-args:f90: :tangle qmc_gaussian.f90
:END:
We will now improve the sampling and allow to sample in the whole
3D space, correcting the bias related to the sampling in the box.
We will now improve the sampling and allow to sample in the whole
3D space, correcting the bias related to the sampling in the box.
Instead of drawing uniform random numbers, we will draw Gaussian
random numbers centered on 0 and with a variance of 1. Now the
equation for the energy is changed into
Instead of drawing uniform random numbers, we will draw Gaussian
random numbers centered on 0 and with a variance of 1.
\[
E = \frac{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r})\right]^2}{P(\mathbf{r})}\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r}) \right]^2}{P(\mathbf{r})} d\mathbf{r}}
\]
with
\[
P(\mathbf{r}) = \frac{1}{(2 \pi)^{3/2}}\exp\left( -\frac{\mathbf{r}^2}{2} \right)
\]
To obtain Gaussian-distributed random numbers, you can apply the
[[https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform][Box Muller transform]] to uniform random numbers:
As the coordinates are drawn with probability $P(\mathbf{r})$, the
average energy can be computed as
\begin{eqnarray*}
z_1 &=& \sqrt{-2 \ln u_1} \cos(2 \pi u_2) \\
z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2)
\end{eqnarray*}
$$
E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r}_i)} \delta \mathbf{r}
$$
#+BEGIN_SRC f90 :tangle qmc_stats.f90
subroutine random_gauss(z,n)
implicit none
integer, intent(in) :: n
double precision, intent(out) :: z(n)
double precision :: u(n+1)
double precision, parameter :: two_pi = 2.d0*dacos(-1.d0)
integer :: i
call random_number(u)
if (iand(n,1) == 0) then
! n is even
do i=1,n,2
z(i) = dsqrt(-2.d0*dlog(u(i)))
z(i+1) = z(i) + dsin( two_pi*u(i+1) )
z(i) = z(i) + dcos( two_pi*u(i+1) )
end do
else
! n is odd
do i=1,n-1,2
z(i) = dsqrt(-2.d0*dlog(u(i)))
z(i+1) = z(i) + dsin( two_pi*u(i+1) )
z(i) = z(i) + dcos( two_pi*u(i+1) )
end do
z(n) = dsqrt(-2.d0*dlog(u(n)))
z(n) = z(n) + dcos( two_pi*u(n+1) )
end if
end subroutine random_gauss
#+END_SRC
Now the equation for the energy is changed into
\[
E = \frac{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r})\right]^2}{P(\mathbf{r})}\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r}) \right]^2}{P(\mathbf{r})} d\mathbf{r}}
\]
with
\[
P(\mathbf{r}) = \frac{1}{(2 \pi)^{3/2}}\exp\left( -\frac{\mathbf{r}^2}{2} \right)
\]
As the coordinates are drawn with probability $P(\mathbf{r})$, the
average energy can be computed as
$$
E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r}_i)} \delta \mathbf{r}
$$
#+BEGIN_SRC python :results output
from hydrogen import *
from qmc_stats import *
#+BEGIN_SRC python
norm_gauss = 1./(2.*np.pi)**(1.5)
def gaussian(r):
return norm_gauss * np.exp(-np.dot(r,r)*0.5)
#+END_SRC
#+RESULTS:
#+BEGIN_SRC python
def MonteCarlo(a,nmax):
E = 0.
N = 0.
@ -757,58 +798,113 @@ def MonteCarlo(a,nmax):
N += w
E += w * e_loc(a,r)
return E/N
#+END_SRC
#+RESULTS:
#+BEGIN_SRC python :results output
a = 0.9
nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
#+END_SRC
#+END_SRC
#+RESULTS:
: E = -0.4952488228427792 +/- 0.00011913174676540714
#+RESULTS:
: E = -0.49507506093129827 +/- 0.00014164037765553668
#+BEGIN_SRC f90
double precision function gaussian(r)
implicit none
double precision, intent(in) :: r(3)
double precision, parameter :: norm_gauss = 1.d0/(2.d0*dacos(-1.d0))**(1.5d0)
gaussian = norm_gauss * dexp( -0.5d0 * dsqrt(r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
end function gaussian
subroutine gaussian_montecarlo(a,nmax,energy)
implicit none
double precision, intent(in) :: a
integer , intent(in) :: nmax
double precision, intent(out) :: energy
integer*8 :: istep
double precision :: norm, r(3), w
double precision, external :: e_loc, psi, gaussian
energy = 0.d0
norm = 0.d0
do istep = 1,nmax
call random_gauss(r,3)
w = psi(a,r)
w = w*w / gaussian(r)
norm = norm + w
energy = energy + w * e_loc(a,r)
end do
energy = energy / norm
end subroutine gaussian_montecarlo
program qmc
implicit none
double precision, parameter :: a = 0.9
integer , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns)
double precision :: ave, err
do irun=1,nruns
call gaussian_montecarlo(a,nmax,X(irun))
enddo
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
end program qmc
#+END_SRC
#+begin_src sh :results output :exports both
gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian
./qmc_gaussian
#+end_src
#+RESULTS:
: E = -0.49606057056767766 +/- 1.3918807547836872E-004
** Sampling with $\Psi^2$
We will now use the square of the wave function to make the sampling:
We will now use the square of the wave function to make the sampling:
\[
P(\mathbf{r}) = \left[\Psi(\mathbf{r})\right]^2
\]
\[
P(\mathbf{r}) = \left[\Psi(\mathbf{r})\right]^2
\]
Now, the expression for the energy will be simplified to the
average of the local energies, each with a weight of 1.
Now, the expression for the energy will be simplified to the
average of the local energies, each with a weight of 1.
$$
E \approx \frac{1}{M}\sum_{i=1}^M E_L(\mathbf{r}_i)}
$$
$$
E \approx \frac{1}{M}\sum_{i=1}^M E_L(\mathbf{r}_i)}
$$
To generate the probability density $\Psi^2$, we can use a drifted
diffusion scheme:
To generate the probability density $\Psi^2$, we can use a drifted
diffusion scheme:
\[
\mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau \frac{\nabla
\Psi(r)}{\Psi(r)} + \eta \sqrt{\tau}
\]
\[
\mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau \frac{\nabla
\Psi(r)}{\Psi(r)} + \eta \sqrt{\tau}
\]
where $\eta$ is a normally-distributed Gaussian random number.
where $\eta$ is a normally-distributed Gaussian random number.
First, write a function to compute the drift vector $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$.
First, write a function to compute the drift vector $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$.
#+BEGIN_SRC python
#+BEGIN_SRC python
def drift(a,r):
ar_inv = -a/np.sqrt(np.dot(r,r))
return r * ar_inv
#+END_SRC
#+END_SRC
#+RESULTS:
#+RESULTS:
#+BEGIN_SRC python
#+BEGIN_SRC python
def MonteCarlo(a,tau,nmax):
E = 0.
N = 0.
@ -836,20 +932,20 @@ def MonteCarlo(a,tau,nmax):
N += 1.
E += e_loc(a,r_old)
return E/N
#+END_SRC
#+END_SRC
#+RESULTS:
#+RESULTS:
#+BEGIN_SRC python :results output
#+BEGIN_SRC python :results output
nmax = 100000
tau = 0.1
X = [MonteCarlo(a,tau,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
#+END_SRC
#+END_SRC
#+RESULTS:
: E = -0.4951783346213532 +/- 0.00022067316984271938
#+RESULTS:
: E = -0.4951783346213532 +/- 0.00022067316984271938
* Diffusion Monte Carlo

View File

@ -1,12 +1,12 @@
import numpy as np
from hydrogen import e_loc, psi
interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3
interval = np.linspace(-5,5,num=50)
delta = (interval[1]-interval[0])**3
r = np.array([0.,0.,0.])
r = np.array([0.,0.,0.])
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
E = 0.
norm = 0.
for x in interval:

View File

@ -13,3 +13,31 @@ subroutine ave_error(x,n,ave,err)
err = dsqrt(variance/dble(n))
endif
end subroutine ave_error
subroutine random_gauss(z,n)
implicit none
integer, intent(in) :: n
double precision, intent(out) :: z(n)
double precision :: u(n+1)
double precision, parameter :: two_pi = 2.d0*dacos(-1.d0)
integer :: i
call random_number(u)
if (iand(n,1) == 0) then
! n is even
do i=1,n,2
z(i) = dsqrt(-2.d0*dlog(u(i)))
z(i+1) = z(i) + dsin( two_pi*u(i+1) )
z(i) = z(i) + dcos( two_pi*u(i+1) )
end do
else
! n is odd
do i=1,n-1,2
z(i) = dsqrt(-2.d0*dlog(u(i)))
z(i+1) = z(i) + dsin( two_pi*u(i+1) )
z(i) = z(i) + dcos( two_pi*u(i+1) )
end do
z(n) = dsqrt(-2.d0*dlog(u(n)))
z(n) = z(n) + dcos( two_pi*u(n+1) )
end if
end subroutine random_gauss

View File

@ -1,7 +1,7 @@
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a, nmax):
def MonteCarlo(a, nmax):
E = 0.
N = 0.
for istep in range(nmax):
@ -12,8 +12,8 @@ def MonteCarlo(a, nmax):
E += w * e_loc(a,r)
return E/N
a = 0.9
nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
a = 0.9
nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")