1
0
mirror of https://github.com/TREX-CoE/qmc-lttc.git synced 2024-12-21 11:53:58 +01:00

Update QMC.org

This commit is contained in:
filippi-claudia 2021-02-01 13:20:26 +01:00 committed by GitHub
parent f8246e9e25
commit 439fc5b5db
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

38
QMC.org
View File

@ -75,9 +75,9 @@
\begin{eqnarray*}
E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle}
= \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\
& = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
= \frac{\int \left[\Psi(\mathbf{r})\right]^2\, E_L(\mathbf{r})\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
= \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}} \\
& = & \frac{\int |\Psi(\mathbf{r})|^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}}
= \frac{\int |\Psi(\mathbf{r})|^2\, E_L(\mathbf{r})\,d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}}
\end{eqnarray*}
For few dimensions, one can easily compute $E$ by evaluating the integrals on a grid but, for a high number of dimensions, one can resort to Monte Carlo techniques to compute $E$.
@ -93,17 +93,17 @@
$$ \int_{-\infty}^\infty P(x)\,dx = 1. $$
Similarly, we can view the the energy of a system, $E$, as the expected value of the local energy with respect to
a probability density $P(\mathbf{r}}$ defined in 3$N$ dimensions:
a probability density $P(\mathbf{r})$ defined in 3$N$ dimensions:
$$ E = \int E_L(\mathbf{r}) P(\mathbf{r})\,d\mathbf{r}} \equiv \langle E_L \rangle_{\Psi^2}\,, $$
$$ E = \int E_L(\mathbf{r}) P(\mathbf{r})\,d\mathbf{r} \equiv \langle E_L \rangle_{\Psi^2}\,, $$
where the probability density is given by the square of the wave function:
$$ P(\mathbf{r}) = \frac{|Psi(\mathbf{r}|^2){\int \left |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,. $$
$$ P(\mathbf{r}) = \frac{|Psi(\mathbf{r}|^2)}{\int \left |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,. $$
If we can sample $N_{\rm MC}$ configurations $\{\mathbf{r}\}$ distributed as $p$, we can estimate $E$ as the average of the local energy computed over these configurations:
$$ E \approx \frac{1}{N_{\rm MC}} \sum_{i=1}^{N_{\rm MC}} E_L(\mathbf{r}_i} \,.
$$ E \approx \frac{1}{N_{\rm MC}} \sum_{i=1}^{N_{\rm MC}} E_L(\mathbf{r}_i) \,. $$
* Numerical evaluation of the energy of the hydrogen atom
@ -399,7 +399,7 @@ end function e_loc
-\frac{1}{2} a^2 + \frac{a-1}{\mathbf{|r|}}
\end{eqnarray*}
$a=1$ cancels the $1/|r|$ term, and makes the energy constant,
$a=1$ cancels the $1/|r|$ term, and makes the energy constant and
equal to -0.5 atomic units.
** Plot of the local energy along the $x$ axis
@ -749,8 +749,8 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
energy associated with $\Psi$ around its average:
$$
\sigma^2(E_L) = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \left[
E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
\sigma^2(E_L) = \frac{\int |\Psi(\mathbf{r})|^2\, \left[
E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}}
$$
which can be simplified as
@ -1093,7 +1093,7 @@ end subroutine ave_error
Consider again the expression of the energy
\begin{eqnarray*}
E & = & \frac{\int E_L(\mathbf{r})\left[\Psi(\mathbf{r})\right]^2\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}\,.
E & = & \frac{\int E_L(\mathbf{r})|\Psi(\mathbf{r})|^2\,d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}}\,.
\end{eqnarray*}
Clearly, the square of the wave function is a good choice of probability density to sample but we will start with something simpler and rewrite the energy as
@ -1315,7 +1315,7 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
We will now use the square of the wave function to sample random
points distributed with the probability density
\[
P(\mathbf{r}) = \frac{|Psi(\mathbf{r}|^2){\int \left |\Psi(\mathbf{r})|^2 d\mathbf{r}}
P(\mathbf{r}) = \frac{|Psi(\mathbf{r})|^2)}{\int |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,.
\]
The expression of the average energy is now simplified as the average of
@ -1323,16 +1323,16 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
sampling:
$$
E \approx \frac{1}{N_{\rm MC}}\sum_{i=1}^{N_{\rm MC} E_L(\mathbf{r}_i)
E \approx \frac{1}{N_{\rm MC}}\sum_{i=1}^{N_{\rm MC}} E_L(\mathbf{r}_i)\,.
$$
To sample a chosen probability density, an efficient method is the
[[https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm][Metropolis-Hastings sampling algorithm]]. Starting from a random
initial position $\mathbf{r}_0$, we will realize a random walk:
$$ \mathbf{r}_0 \rightarrow \mathbf{r}_1 \rightarrow \mathbf{r}_2 \ldots \mathbf{r}_{N_{\rm MC}}\,, $$
$$ \mathbf{r}_0 \rightarrow \mathbf{r}_1 \rightarrow \mathbf{r}_2 \ldots \rightarrow \mathbf{r}_{N_{\rm MC}}\,, $$
following the following algorithm.
according to the following algorithm.
At every step, we propose a new move according to a transition probability $T(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1})$ of our choice.
@ -1353,13 +1353,13 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
probability
$$
A{\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{T(\mathbf{r}_{n},\mathbf{r}_{n+1}) P(\mathbf{r}_{n+1})}{T(\mathbf{r}_{n+1},\mathbf{r}_n)P(\mathbf{r}_{n})}\right)\,,
A(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{T(\mathbf{r}_{n},\mathbf{r}_{n+1}) P(\mathbf{r}_{n+1})}{T(\mathbf{r}_{n+1},\mathbf{r}_n)P(\mathbf{r}_{n})}\right)\,,
$$
which, for our choice of transition probability, becomes
$$
A{\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{P(\mathbf{r}_{n+1})}{P(\mathbf{r}_{n})}\right)= \min\left(1,\frac{\Psi(\mathbf{r}_{n+1})^2}{\Psi(\mathbf{r}_{n})^2}
A(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{P(\mathbf{r}_{n+1})}{P(\mathbf{r}_{n})}\right)= \min\left(1,\frac{\Psi(\mathbf{r}_{n+1})^2}{\Psi(\mathbf{r}_{n})^2}\right)\,.
$$
Explain why the transition probability cancels out in the expression of $A$. Also note that we do not need to compute the norm of the wave function!
@ -1734,13 +1734,13 @@ end subroutine random_gauss
\frac{\nabla [ \Psi^2 ]}{\Psi^2} = 2 \frac{\nabla \Psi}{\Psi}\,,
\]
and add the so-called drift vector, so that the numerical scheme becomes a
and add the so-called drift vector, $\frac{\nabla \Psi}{\Psi}$, so that the numerical scheme becomes a
drifted diffusion with transition probability:
\[
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) =
\frac{1}{(2\pi\,\delta t)^{3/2}} \exp \left[ - \frac{\left(
\mathbf{r}_{n+1} - \mathbf{r}_{n} - \frac{\nabla
\mathbf{r}_{n+1} - \mathbf{r}_{n} - \delta t\frac{\nabla
\Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{2\,\delta t} \right]\,.
\]