mirror of
https://github.com/TREX-CoE/qmc-lttc.git
synced 2024-12-21 11:53:58 +01:00
Update QMC.org
This commit is contained in:
parent
f8246e9e25
commit
439fc5b5db
38
QMC.org
38
QMC.org
@ -75,9 +75,9 @@
|
|||||||
|
|
||||||
\begin{eqnarray*}
|
\begin{eqnarray*}
|
||||||
E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle}
|
E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle}
|
||||||
= \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\
|
= \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}} \\
|
||||||
& = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
|
& = & \frac{\int |\Psi(\mathbf{r})|^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}}
|
||||||
= \frac{\int \left[\Psi(\mathbf{r})\right]^2\, E_L(\mathbf{r})\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
|
= \frac{\int |\Psi(\mathbf{r})|^2\, E_L(\mathbf{r})\,d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}}
|
||||||
\end{eqnarray*}
|
\end{eqnarray*}
|
||||||
|
|
||||||
For few dimensions, one can easily compute $E$ by evaluating the integrals on a grid but, for a high number of dimensions, one can resort to Monte Carlo techniques to compute $E$.
|
For few dimensions, one can easily compute $E$ by evaluating the integrals on a grid but, for a high number of dimensions, one can resort to Monte Carlo techniques to compute $E$.
|
||||||
@ -93,17 +93,17 @@
|
|||||||
$$ \int_{-\infty}^\infty P(x)\,dx = 1. $$
|
$$ \int_{-\infty}^\infty P(x)\,dx = 1. $$
|
||||||
|
|
||||||
Similarly, we can view the the energy of a system, $E$, as the expected value of the local energy with respect to
|
Similarly, we can view the the energy of a system, $E$, as the expected value of the local energy with respect to
|
||||||
a probability density $P(\mathbf{r}}$ defined in 3$N$ dimensions:
|
a probability density $P(\mathbf{r})$ defined in 3$N$ dimensions:
|
||||||
|
|
||||||
$$ E = \int E_L(\mathbf{r}) P(\mathbf{r})\,d\mathbf{r}} \equiv \langle E_L \rangle_{\Psi^2}\,, $$
|
$$ E = \int E_L(\mathbf{r}) P(\mathbf{r})\,d\mathbf{r} \equiv \langle E_L \rangle_{\Psi^2}\,, $$
|
||||||
|
|
||||||
where the probability density is given by the square of the wave function:
|
where the probability density is given by the square of the wave function:
|
||||||
|
|
||||||
$$ P(\mathbf{r}) = \frac{|Psi(\mathbf{r}|^2){\int \left |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,. $$
|
$$ P(\mathbf{r}) = \frac{|Psi(\mathbf{r}|^2)}{\int \left |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,. $$
|
||||||
|
|
||||||
If we can sample $N_{\rm MC}$ configurations $\{\mathbf{r}\}$ distributed as $p$, we can estimate $E$ as the average of the local energy computed over these configurations:
|
If we can sample $N_{\rm MC}$ configurations $\{\mathbf{r}\}$ distributed as $p$, we can estimate $E$ as the average of the local energy computed over these configurations:
|
||||||
|
|
||||||
$$ E \approx \frac{1}{N_{\rm MC}} \sum_{i=1}^{N_{\rm MC}} E_L(\mathbf{r}_i} \,.
|
$$ E \approx \frac{1}{N_{\rm MC}} \sum_{i=1}^{N_{\rm MC}} E_L(\mathbf{r}_i) \,. $$
|
||||||
|
|
||||||
* Numerical evaluation of the energy of the hydrogen atom
|
* Numerical evaluation of the energy of the hydrogen atom
|
||||||
|
|
||||||
@ -399,7 +399,7 @@ end function e_loc
|
|||||||
-\frac{1}{2} a^2 + \frac{a-1}{\mathbf{|r|}}
|
-\frac{1}{2} a^2 + \frac{a-1}{\mathbf{|r|}}
|
||||||
\end{eqnarray*}
|
\end{eqnarray*}
|
||||||
|
|
||||||
$a=1$ cancels the $1/|r|$ term, and makes the energy constant,
|
$a=1$ cancels the $1/|r|$ term, and makes the energy constant and
|
||||||
equal to -0.5 atomic units.
|
equal to -0.5 atomic units.
|
||||||
|
|
||||||
** Plot of the local energy along the $x$ axis
|
** Plot of the local energy along the $x$ axis
|
||||||
@ -749,8 +749,8 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
|||||||
energy associated with $\Psi$ around its average:
|
energy associated with $\Psi$ around its average:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\sigma^2(E_L) = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \left[
|
\sigma^2(E_L) = \frac{\int |\Psi(\mathbf{r})|^2\, \left[
|
||||||
E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}
|
E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}}
|
||||||
$$
|
$$
|
||||||
which can be simplified as
|
which can be simplified as
|
||||||
|
|
||||||
@ -1093,7 +1093,7 @@ end subroutine ave_error
|
|||||||
Consider again the expression of the energy
|
Consider again the expression of the energy
|
||||||
|
|
||||||
\begin{eqnarray*}
|
\begin{eqnarray*}
|
||||||
E & = & \frac{\int E_L(\mathbf{r})\left[\Psi(\mathbf{r})\right]^2\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}\,.
|
E & = & \frac{\int E_L(\mathbf{r})|\Psi(\mathbf{r})|^2\,d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}}\,.
|
||||||
\end{eqnarray*}
|
\end{eqnarray*}
|
||||||
|
|
||||||
Clearly, the square of the wave function is a good choice of probability density to sample but we will start with something simpler and rewrite the energy as
|
Clearly, the square of the wave function is a good choice of probability density to sample but we will start with something simpler and rewrite the energy as
|
||||||
@ -1315,7 +1315,7 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
|
|||||||
We will now use the square of the wave function to sample random
|
We will now use the square of the wave function to sample random
|
||||||
points distributed with the probability density
|
points distributed with the probability density
|
||||||
\[
|
\[
|
||||||
P(\mathbf{r}) = \frac{|Psi(\mathbf{r}|^2){\int \left |\Psi(\mathbf{r})|^2 d\mathbf{r}}
|
P(\mathbf{r}) = \frac{|Psi(\mathbf{r})|^2)}{\int |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,.
|
||||||
\]
|
\]
|
||||||
|
|
||||||
The expression of the average energy is now simplified as the average of
|
The expression of the average energy is now simplified as the average of
|
||||||
@ -1323,16 +1323,16 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
|
|||||||
sampling:
|
sampling:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
E \approx \frac{1}{N_{\rm MC}}\sum_{i=1}^{N_{\rm MC} E_L(\mathbf{r}_i)
|
E \approx \frac{1}{N_{\rm MC}}\sum_{i=1}^{N_{\rm MC}} E_L(\mathbf{r}_i)\,.
|
||||||
$$
|
$$
|
||||||
|
|
||||||
To sample a chosen probability density, an efficient method is the
|
To sample a chosen probability density, an efficient method is the
|
||||||
[[https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm][Metropolis-Hastings sampling algorithm]]. Starting from a random
|
[[https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm][Metropolis-Hastings sampling algorithm]]. Starting from a random
|
||||||
initial position $\mathbf{r}_0$, we will realize a random walk:
|
initial position $\mathbf{r}_0$, we will realize a random walk:
|
||||||
|
|
||||||
$$ \mathbf{r}_0 \rightarrow \mathbf{r}_1 \rightarrow \mathbf{r}_2 \ldots \mathbf{r}_{N_{\rm MC}}\,, $$
|
$$ \mathbf{r}_0 \rightarrow \mathbf{r}_1 \rightarrow \mathbf{r}_2 \ldots \rightarrow \mathbf{r}_{N_{\rm MC}}\,, $$
|
||||||
|
|
||||||
following the following algorithm.
|
according to the following algorithm.
|
||||||
|
|
||||||
At every step, we propose a new move according to a transition probability $T(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1})$ of our choice.
|
At every step, we propose a new move according to a transition probability $T(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1})$ of our choice.
|
||||||
|
|
||||||
@ -1353,13 +1353,13 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
|
|||||||
probability
|
probability
|
||||||
|
|
||||||
$$
|
$$
|
||||||
A{\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{T(\mathbf{r}_{n},\mathbf{r}_{n+1}) P(\mathbf{r}_{n+1})}{T(\mathbf{r}_{n+1},\mathbf{r}_n)P(\mathbf{r}_{n})}\right)\,,
|
A(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{T(\mathbf{r}_{n},\mathbf{r}_{n+1}) P(\mathbf{r}_{n+1})}{T(\mathbf{r}_{n+1},\mathbf{r}_n)P(\mathbf{r}_{n})}\right)\,,
|
||||||
$$
|
$$
|
||||||
|
|
||||||
which, for our choice of transition probability, becomes
|
which, for our choice of transition probability, becomes
|
||||||
|
|
||||||
$$
|
$$
|
||||||
A{\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{P(\mathbf{r}_{n+1})}{P(\mathbf{r}_{n})}\right)= \min\left(1,\frac{\Psi(\mathbf{r}_{n+1})^2}{\Psi(\mathbf{r}_{n})^2}
|
A(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{P(\mathbf{r}_{n+1})}{P(\mathbf{r}_{n})}\right)= \min\left(1,\frac{\Psi(\mathbf{r}_{n+1})^2}{\Psi(\mathbf{r}_{n})^2}\right)\,.
|
||||||
$$
|
$$
|
||||||
|
|
||||||
Explain why the transition probability cancels out in the expression of $A$. Also note that we do not need to compute the norm of the wave function!
|
Explain why the transition probability cancels out in the expression of $A$. Also note that we do not need to compute the norm of the wave function!
|
||||||
@ -1734,13 +1734,13 @@ end subroutine random_gauss
|
|||||||
\frac{\nabla [ \Psi^2 ]}{\Psi^2} = 2 \frac{\nabla \Psi}{\Psi}\,,
|
\frac{\nabla [ \Psi^2 ]}{\Psi^2} = 2 \frac{\nabla \Psi}{\Psi}\,,
|
||||||
\]
|
\]
|
||||||
|
|
||||||
and add the so-called drift vector, so that the numerical scheme becomes a
|
and add the so-called drift vector, $\frac{\nabla \Psi}{\Psi}$, so that the numerical scheme becomes a
|
||||||
drifted diffusion with transition probability:
|
drifted diffusion with transition probability:
|
||||||
|
|
||||||
\[
|
\[
|
||||||
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) =
|
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) =
|
||||||
\frac{1}{(2\pi\,\delta t)^{3/2}} \exp \left[ - \frac{\left(
|
\frac{1}{(2\pi\,\delta t)^{3/2}} \exp \left[ - \frac{\left(
|
||||||
\mathbf{r}_{n+1} - \mathbf{r}_{n} - \frac{\nabla
|
\mathbf{r}_{n+1} - \mathbf{r}_{n} - \delta t\frac{\nabla
|
||||||
\Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{2\,\delta t} \right]\,.
|
\Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{2\,\delta t} \right]\,.
|
||||||
\]
|
\]
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user