From 439fc5b5db7bba30146fa5c2670aca450f34d199 Mon Sep 17 00:00:00 2001 From: filippi-claudia <44236509+filippi-claudia@users.noreply.github.com> Date: Mon, 1 Feb 2021 13:20:26 +0100 Subject: [PATCH] Update QMC.org --- QMC.org | 38 +++++++++++++++++++------------------- 1 file changed, 19 insertions(+), 19 deletions(-) diff --git a/QMC.org b/QMC.org index 123bc6b..c701493 100644 --- a/QMC.org +++ b/QMC.org @@ -75,9 +75,9 @@ \begin{eqnarray*} E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle} - = \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\ - & = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} - = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, E_L(\mathbf{r})\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} + = \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}} \\ + & = & \frac{\int |\Psi(\mathbf{r})|^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}} + = \frac{\int |\Psi(\mathbf{r})|^2\, E_L(\mathbf{r})\,d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}} \end{eqnarray*} For few dimensions, one can easily compute $E$ by evaluating the integrals on a grid but, for a high number of dimensions, one can resort to Monte Carlo techniques to compute $E$. @@ -93,17 +93,17 @@ $$ \int_{-\infty}^\infty P(x)\,dx = 1. $$ Similarly, we can view the the energy of a system, $E$, as the expected value of the local energy with respect to - a probability density $P(\mathbf{r}}$ defined in 3$N$ dimensions: + a probability density $P(\mathbf{r})$ defined in 3$N$ dimensions: - $$ E = \int E_L(\mathbf{r}) P(\mathbf{r})\,d\mathbf{r}} \equiv \langle E_L \rangle_{\Psi^2}\,, $$ + $$ E = \int E_L(\mathbf{r}) P(\mathbf{r})\,d\mathbf{r} \equiv \langle E_L \rangle_{\Psi^2}\,, $$ where the probability density is given by the square of the wave function: - $$ P(\mathbf{r}) = \frac{|Psi(\mathbf{r}|^2){\int \left |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,. $$ + $$ P(\mathbf{r}) = \frac{|Psi(\mathbf{r}|^2)}{\int \left |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,. $$ If we can sample $N_{\rm MC}$ configurations $\{\mathbf{r}\}$ distributed as $p$, we can estimate $E$ as the average of the local energy computed over these configurations: - $$ E \approx \frac{1}{N_{\rm MC}} \sum_{i=1}^{N_{\rm MC}} E_L(\mathbf{r}_i} \,. + $$ E \approx \frac{1}{N_{\rm MC}} \sum_{i=1}^{N_{\rm MC}} E_L(\mathbf{r}_i) \,. $$ * Numerical evaluation of the energy of the hydrogen atom @@ -399,7 +399,7 @@ end function e_loc -\frac{1}{2} a^2 + \frac{a-1}{\mathbf{|r|}} \end{eqnarray*} - $a=1$ cancels the $1/|r|$ term, and makes the energy constant, + $a=1$ cancels the $1/|r|$ term, and makes the energy constant and equal to -0.5 atomic units. ** Plot of the local energy along the $x$ axis @@ -749,8 +749,8 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen energy associated with $\Psi$ around its average: $$ - \sigma^2(E_L) = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \left[ - E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} + \sigma^2(E_L) = \frac{\int |\Psi(\mathbf{r})|^2\, \left[ + E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}} $$ which can be simplified as @@ -1093,7 +1093,7 @@ end subroutine ave_error Consider again the expression of the energy \begin{eqnarray*} - E & = & \frac{\int E_L(\mathbf{r})\left[\Psi(\mathbf{r})\right]^2\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}}\,. + E & = & \frac{\int E_L(\mathbf{r})|\Psi(\mathbf{r})|^2\,d\mathbf{r}}{\int |\Psi(\mathbf{r}) |^2 d\mathbf{r}}\,. \end{eqnarray*} Clearly, the square of the wave function is a good choice of probability density to sample but we will start with something simpler and rewrite the energy as @@ -1315,7 +1315,7 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform We will now use the square of the wave function to sample random points distributed with the probability density \[ - P(\mathbf{r}) = \frac{|Psi(\mathbf{r}|^2){\int \left |\Psi(\mathbf{r})|^2 d\mathbf{r}} + P(\mathbf{r}) = \frac{|Psi(\mathbf{r})|^2)}{\int |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,. \] The expression of the average energy is now simplified as the average of @@ -1323,16 +1323,16 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform sampling: $$ - E \approx \frac{1}{N_{\rm MC}}\sum_{i=1}^{N_{\rm MC} E_L(\mathbf{r}_i) + E \approx \frac{1}{N_{\rm MC}}\sum_{i=1}^{N_{\rm MC}} E_L(\mathbf{r}_i)\,. $$ To sample a chosen probability density, an efficient method is the [[https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm][Metropolis-Hastings sampling algorithm]]. Starting from a random initial position $\mathbf{r}_0$, we will realize a random walk: - $$ \mathbf{r}_0 \rightarrow \mathbf{r}_1 \rightarrow \mathbf{r}_2 \ldots \mathbf{r}_{N_{\rm MC}}\,, $$ + $$ \mathbf{r}_0 \rightarrow \mathbf{r}_1 \rightarrow \mathbf{r}_2 \ldots \rightarrow \mathbf{r}_{N_{\rm MC}}\,, $$ - following the following algorithm. + according to the following algorithm. At every step, we propose a new move according to a transition probability $T(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1})$ of our choice. @@ -1353,13 +1353,13 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform probability $$ - A{\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{T(\mathbf{r}_{n},\mathbf{r}_{n+1}) P(\mathbf{r}_{n+1})}{T(\mathbf{r}_{n+1},\mathbf{r}_n)P(\mathbf{r}_{n})}\right)\,, + A(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{T(\mathbf{r}_{n},\mathbf{r}_{n+1}) P(\mathbf{r}_{n+1})}{T(\mathbf{r}_{n+1},\mathbf{r}_n)P(\mathbf{r}_{n})}\right)\,, $$ which, for our choice of transition probability, becomes $$ - A{\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{P(\mathbf{r}_{n+1})}{P(\mathbf{r}_{n})}\right)= \min\left(1,\frac{\Psi(\mathbf{r}_{n+1})^2}{\Psi(\mathbf{r}_{n})^2} + A(\mathbf{r}_{n}\rightarrow\mathbf{r}_{n+1}) = \min\left(1,\frac{P(\mathbf{r}_{n+1})}{P(\mathbf{r}_{n})}\right)= \min\left(1,\frac{\Psi(\mathbf{r}_{n+1})^2}{\Psi(\mathbf{r}_{n})^2}\right)\,. $$ Explain why the transition probability cancels out in the expression of $A$. Also note that we do not need to compute the norm of the wave function! @@ -1734,13 +1734,13 @@ end subroutine random_gauss \frac{\nabla [ \Psi^2 ]}{\Psi^2} = 2 \frac{\nabla \Psi}{\Psi}\,, \] - and add the so-called drift vector, so that the numerical scheme becomes a + and add the so-called drift vector, $\frac{\nabla \Psi}{\Psi}$, so that the numerical scheme becomes a drifted diffusion with transition probability: \[ T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = \frac{1}{(2\pi\,\delta t)^{3/2}} \exp \left[ - \frac{\left( - \mathbf{r}_{n+1} - \mathbf{r}_{n} - \frac{\nabla + \mathbf{r}_{n+1} - \mathbf{r}_{n} - \delta t\frac{\nabla \Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{2\,\delta t} \right]\,. \]