mirror of
https://github.com/TREX-CoE/qmc-lttc.git
synced 2025-01-03 01:56:20 +01:00
deploy: f69b5f0502
This commit is contained in:
parent
7de40ef5ae
commit
3a6bc9d6b7
398
index.html
398
index.html
@ -3,7 +3,7 @@
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2021-02-01 Mon 12:52 -->
|
||||
<!-- 2021-02-01 Mon 20:57 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<title>Quantum Monte Carlo</title>
|
||||
@ -329,151 +329,151 @@ for the JavaScript code in this tag.
|
||||
<h2>Table of Contents</h2>
|
||||
<div id="text-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#org911f20e">1. Introduction</a>
|
||||
<li><a href="#org2651723">1. Introduction</a>
|
||||
<ul>
|
||||
<li><a href="#org8dc5f89">1.1. Energy and local energy</a></li>
|
||||
<li><a href="#org131ad5b">1.1. Energy and local energy</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgd55defa">2. Numerical evaluation of the energy of the hydrogen atom</a>
|
||||
<li><a href="#orgaef3f04">2. Numerical evaluation of the energy of the hydrogen atom</a>
|
||||
<ul>
|
||||
<li><a href="#org5925d8c">2.1. Local energy</a>
|
||||
<li><a href="#orgd36696b">2.1. Local energy</a>
|
||||
<ul>
|
||||
<li><a href="#org45bba09">2.1.1. Exercise 1</a>
|
||||
<li><a href="#org06e7f3c">2.1.1. Exercise 1</a>
|
||||
<ul>
|
||||
<li><a href="#org143bcea">2.1.1.1. Solution</a></li>
|
||||
<li><a href="#org923cd33">2.1.1.1. Solution</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgcf94a92">2.1.2. Exercise 2</a>
|
||||
<li><a href="#orgc226f7b">2.1.2. Exercise 2</a>
|
||||
<ul>
|
||||
<li><a href="#org866900c">2.1.2.1. Solution</a></li>
|
||||
<li><a href="#org68ff820">2.1.2.1. Solution</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org17e5bee">2.1.3. Exercise 3</a>
|
||||
<li><a href="#orgd05efaf">2.1.3. Exercise 3</a>
|
||||
<ul>
|
||||
<li><a href="#org5eeb018">2.1.3.1. Solution</a></li>
|
||||
<li><a href="#orga686e1e">2.1.3.1. Solution</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org8a93471">2.1.4. Exercise 4</a>
|
||||
<li><a href="#org64eedf7">2.1.4. Exercise 4</a>
|
||||
<ul>
|
||||
<li><a href="#org2af14b8">2.1.4.1. Solution</a></li>
|
||||
<li><a href="#org089f90c">2.1.4.1. Solution</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orga1a0859">2.1.5. Exercise 5</a>
|
||||
<li><a href="#org09ee903">2.1.5. Exercise 5</a>
|
||||
<ul>
|
||||
<li><a href="#org92ebd7d">2.1.5.1. Solution</a></li>
|
||||
<li><a href="#orgcc02f60">2.1.5.1. Solution</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org5cca68c">2.2. Plot of the local energy along the \(x\) axis</a>
|
||||
<li><a href="#org2f2d6bb">2.2. Plot of the local energy along the \(x\) axis</a>
|
||||
<ul>
|
||||
<li><a href="#org27f229d">2.2.1. Exercise</a>
|
||||
<li><a href="#orga518fc0">2.2.1. Exercise</a>
|
||||
<ul>
|
||||
<li><a href="#orgefbba7b">2.2.1.1. Solution</a></li>
|
||||
<li><a href="#org13a7709">2.2.1.1. Solution</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org6f7b212">2.3. Numerical estimation of the energy</a>
|
||||
<li><a href="#orgcc96fb8">2.3. Numerical estimation of the energy</a>
|
||||
<ul>
|
||||
<li><a href="#org73d0044">2.3.1. Exercise</a>
|
||||
<li><a href="#org3a137bd">2.3.1. Exercise</a>
|
||||
<ul>
|
||||
<li><a href="#org9fa7e9b">2.3.1.1. Solution</a></li>
|
||||
<li><a href="#orgc3bbb1c">2.3.1.1. Solution</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org0ae7607">2.4. Variance of the local energy</a>
|
||||
<li><a href="#orgda033ae">2.4. Variance of the local energy</a>
|
||||
<ul>
|
||||
<li><a href="#org85f88d6">2.4.1. Exercise (optional)</a>
|
||||
<li><a href="#org65d32ac">2.4.1. Exercise (optional)</a>
|
||||
<ul>
|
||||
<li><a href="#orgde76526">2.4.1.1. Solution</a></li>
|
||||
<li><a href="#orgaf2eca8">2.4.1.1. Solution</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org85a5fb7">2.4.2. Exercise</a>
|
||||
<li><a href="#orgaef7130">2.4.2. Exercise</a>
|
||||
<ul>
|
||||
<li><a href="#org81ff0a9">2.4.2.1. Solution</a></li>
|
||||
<li><a href="#org7feddd3">2.4.2.1. Solution</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org6efff28">3. Variational Monte Carlo</a>
|
||||
<li><a href="#org79f2368">3. Variational Monte Carlo</a>
|
||||
<ul>
|
||||
<li><a href="#org4d2f25c">3.1. Computation of the statistical error</a>
|
||||
<li><a href="#org4e200b0">3.1. Computation of the statistical error</a>
|
||||
<ul>
|
||||
<li><a href="#org59769bf">3.1.1. Exercise</a>
|
||||
<li><a href="#org9e7a67b">3.1.1. Exercise</a>
|
||||
<ul>
|
||||
<li><a href="#org53031b1">3.1.1.1. Solution</a></li>
|
||||
<li><a href="#org7ce66b5">3.1.1.1. Solution</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgda04982">3.2. Uniform sampling in the box</a>
|
||||
<li><a href="#org72f5650">3.2. Uniform sampling in the box</a>
|
||||
<ul>
|
||||
<li><a href="#org374dde3">3.2.1. Exercise</a>
|
||||
<li><a href="#org16e93f6">3.2.1. Exercise</a>
|
||||
<ul>
|
||||
<li><a href="#org44796a9">3.2.1.1. Solution</a></li>
|
||||
<li><a href="#orgfdffcd3">3.2.1.1. Solution</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org4530877">3.3. Metropolis sampling with \(\Psi^2\)</a>
|
||||
<li><a href="#org02cf3aa">3.3. Metropolis sampling with \(\Psi^2\)</a>
|
||||
<ul>
|
||||
<li><a href="#orgc4d1979">3.3.1. Exercise</a>
|
||||
<li><a href="#org72f25a5">3.3.1. Exercise</a>
|
||||
<ul>
|
||||
<li><a href="#org035fdd6">3.3.1.1. Solution</a></li>
|
||||
<li><a href="#orgd9ea31c">3.3.1.1. Solution</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org7c86c4f">3.4. Gaussian random number generator</a></li>
|
||||
<li><a href="#org4981ac1">3.5. Generalized Metropolis algorithm</a>
|
||||
<li><a href="#org0e35321">3.4. Gaussian random number generator</a></li>
|
||||
<li><a href="#org46c79a2">3.5. Generalized Metropolis algorithm</a>
|
||||
<ul>
|
||||
<li><a href="#orgab2ad4b">3.5.1. Exercise 1</a>
|
||||
<li><a href="#org9114081">3.5.1. Exercise 1</a>
|
||||
<ul>
|
||||
<li><a href="#org1c15cfb">3.5.1.1. Solution</a></li>
|
||||
<li><a href="#org232a214">3.5.1.1. Solution</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org0a89fa9">3.5.2. Exercise 2</a>
|
||||
<li><a href="#orgff165dc">3.5.2. Exercise 2</a>
|
||||
<ul>
|
||||
<li><a href="#org298a5fb">3.5.2.1. Solution</a></li>
|
||||
<li><a href="#orgd31a9d6">3.5.2.1. Solution</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org0bd32b3">4. Diffusion Monte Carlo</a>
|
||||
<li><a href="#orgb642136">4. Diffusion Monte Carlo</a>
|
||||
<ul>
|
||||
<li><a href="#orgf29da22">4.1. Schrödinger equation in imaginary time</a></li>
|
||||
<li><a href="#orgd5273df">4.2. Diffusion and branching</a></li>
|
||||
<li><a href="#orge2f84dc">4.3. Importance sampling</a>
|
||||
<li><a href="#org896d62d">4.1. Schrödinger equation in imaginary time</a></li>
|
||||
<li><a href="#org10e850c">4.2. Diffusion and branching</a></li>
|
||||
<li><a href="#org308a035">4.3. Importance sampling</a>
|
||||
<ul>
|
||||
<li><a href="#org13921db">4.3.1. Appendix : Details of the Derivation</a></li>
|
||||
<li><a href="#orgdd63af1">4.3.1. Appendix : Details of the Derivation</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org2082417">4.4. Pure Diffusion Monte Carlo (PDMC)</a></li>
|
||||
<li><a href="#org7342b6d">4.5. Hydrogen atom</a>
|
||||
<li><a href="#orga67a8aa">4.4. Pure Diffusion Monte Carlo (PDMC)</a></li>
|
||||
<li><a href="#org08cac2c">4.5. Hydrogen atom</a>
|
||||
<ul>
|
||||
<li><a href="#orgc9cbd6b">4.5.1. Exercise</a>
|
||||
<li><a href="#orged492a0">4.5.1. Exercise</a>
|
||||
<ul>
|
||||
<li><a href="#org5b7ac88">4.5.1.1. Solution</a></li>
|
||||
<li><a href="#orgde645d7">4.5.1.1. Solution</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgff35458">4.6. <span class="todo TODO">TODO</span> H<sub>2</sub></a></li>
|
||||
<li><a href="#orgeaede30">4.6. <span class="todo TODO">TODO</span> H<sub>2</sub></a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgfed2921">5. <span class="todo TODO">TODO</span> <code>[0/3]</code> Last things to do</a></li>
|
||||
<li><a href="#orgd092c37">5. <span class="todo TODO">TODO</span> <code>[0/3]</code> Last things to do</a></li>
|
||||
</ul>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org911f20e" class="outline-2">
|
||||
<h2 id="org911f20e"><span class="section-number-2">1</span> Introduction</h2>
|
||||
<div id="outline-container-org2651723" class="outline-2">
|
||||
<h2 id="org2651723"><span class="section-number-2">1</span> Introduction</h2>
|
||||
<div class="outline-text-2" id="text-1">
|
||||
<p>
|
||||
This website contains the QMC tutorial of the 2021 LTTC winter school
|
||||
@ -513,8 +513,8 @@ coordinates, etc).
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org8dc5f89" class="outline-3">
|
||||
<h3 id="org8dc5f89"><span class="section-number-3">1.1</span> Energy and local energy</h3>
|
||||
<div id="outline-container-org131ad5b" class="outline-3">
|
||||
<h3 id="org131ad5b"><span class="section-number-3">1.1</span> Energy and local energy</h3>
|
||||
<div class="outline-text-3" id="text-1-1">
|
||||
<p>
|
||||
For a given system with Hamiltonian \(\hat{H}\) and wave function \(\Psi\), we define the local energy as
|
||||
@ -578,7 +578,7 @@ where the probability density is given by the square of the wave function:
|
||||
</p>
|
||||
|
||||
<p>
|
||||
\[ P(\mathbf{r}) = \frac{|Psi(\mathbf{r}|^2)}{\int |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,. \]
|
||||
\[ P(\mathbf{r}) = \frac{|\Psi(\mathbf{r})|^2}{\int |\Psi(\mathbf{r})|^2 d\mathbf{r}}\,. \]
|
||||
</p>
|
||||
|
||||
<p>
|
||||
@ -592,8 +592,8 @@ If we can sample \(N_{\rm MC}\) configurations \(\{\mathbf{r}\}\) distributed as
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgd55defa" class="outline-2">
|
||||
<h2 id="orgd55defa"><span class="section-number-2">2</span> Numerical evaluation of the energy of the hydrogen atom</h2>
|
||||
<div id="outline-container-orgaef3f04" class="outline-2">
|
||||
<h2 id="orgaef3f04"><span class="section-number-2">2</span> Numerical evaluation of the energy of the hydrogen atom</h2>
|
||||
<div class="outline-text-2" id="text-2">
|
||||
<p>
|
||||
In this section, we consider the hydrogen atom with the following
|
||||
@ -622,8 +622,8 @@ To do that, we will compute the local energy and check whether it is constant.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org5925d8c" class="outline-3">
|
||||
<h3 id="org5925d8c"><span class="section-number-3">2.1</span> Local energy</h3>
|
||||
<div id="outline-container-orgd36696b" class="outline-3">
|
||||
<h3 id="orgd36696b"><span class="section-number-3">2.1</span> Local energy</h3>
|
||||
<div class="outline-text-3" id="text-2-1">
|
||||
<p>
|
||||
You will now program all quantities needed to compute the local energy of the H atom for the given wave function.
|
||||
@ -650,8 +650,8 @@ to catch the error.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org45bba09" class="outline-4">
|
||||
<h4 id="org45bba09"><span class="section-number-4">2.1.1</span> Exercise 1</h4>
|
||||
<div id="outline-container-org06e7f3c" class="outline-4">
|
||||
<h4 id="org06e7f3c"><span class="section-number-4">2.1.1</span> Exercise 1</h4>
|
||||
<div class="outline-text-4" id="text-2-1-1">
|
||||
<div class="exercise">
|
||||
<p>
|
||||
@ -695,8 +695,8 @@ and returns the potential.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org143bcea" class="outline-5">
|
||||
<h5 id="org143bcea"><span class="section-number-5">2.1.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div id="outline-container-org923cd33" class="outline-5">
|
||||
<h5 id="org923cd33"><span class="section-number-5">2.1.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div class="outline-text-5" id="text-2-1-1-1">
|
||||
<p>
|
||||
<b>Python</b>
|
||||
@ -736,8 +736,8 @@ and returns the potential.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgcf94a92" class="outline-4">
|
||||
<h4 id="orgcf94a92"><span class="section-number-4">2.1.2</span> Exercise 2</h4>
|
||||
<div id="outline-container-orgc226f7b" class="outline-4">
|
||||
<h4 id="orgc226f7b"><span class="section-number-4">2.1.2</span> Exercise 2</h4>
|
||||
<div class="outline-text-4" id="text-2-1-2">
|
||||
<div class="exercise">
|
||||
<p>
|
||||
@ -772,8 +772,8 @@ input arguments, and returns a scalar.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org866900c" class="outline-5">
|
||||
<h5 id="org866900c"><span class="section-number-5">2.1.2.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div id="outline-container-org68ff820" class="outline-5">
|
||||
<h5 id="org68ff820"><span class="section-number-5">2.1.2.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div class="outline-text-5" id="text-2-1-2-1">
|
||||
<p>
|
||||
<b>Python</b>
|
||||
@ -800,8 +800,8 @@ input arguments, and returns a scalar.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org17e5bee" class="outline-4">
|
||||
<h4 id="org17e5bee"><span class="section-number-4">2.1.3</span> Exercise 3</h4>
|
||||
<div id="outline-container-orgd05efaf" class="outline-4">
|
||||
<h4 id="orgd05efaf"><span class="section-number-4">2.1.3</span> Exercise 3</h4>
|
||||
<div class="outline-text-4" id="text-2-1-3">
|
||||
<div class="exercise">
|
||||
<p>
|
||||
@ -882,8 +882,8 @@ Therefore, the local kinetic energy is
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org5eeb018" class="outline-5">
|
||||
<h5 id="org5eeb018"><span class="section-number-5">2.1.3.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div id="outline-container-orga686e1e" class="outline-5">
|
||||
<h5 id="orga686e1e"><span class="section-number-5">2.1.3.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div class="outline-text-5" id="text-2-1-3-1">
|
||||
<p>
|
||||
<b>Python</b>
|
||||
@ -924,8 +924,8 @@ Therefore, the local kinetic energy is
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org8a93471" class="outline-4">
|
||||
<h4 id="org8a93471"><span class="section-number-4">2.1.4</span> Exercise 4</h4>
|
||||
<div id="outline-container-org64eedf7" class="outline-4">
|
||||
<h4 id="org64eedf7"><span class="section-number-4">2.1.4</span> Exercise 4</h4>
|
||||
<div class="outline-text-4" id="text-2-1-4">
|
||||
<div class="exercise">
|
||||
<p>
|
||||
@ -968,8 +968,8 @@ local kinetic energy.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org2af14b8" class="outline-5">
|
||||
<h5 id="org2af14b8"><span class="section-number-5">2.1.4.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div id="outline-container-org089f90c" class="outline-5">
|
||||
<h5 id="org089f90c"><span class="section-number-5">2.1.4.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div class="outline-text-5" id="text-2-1-4-1">
|
||||
<p>
|
||||
<b>Python</b>
|
||||
@ -999,8 +999,8 @@ local kinetic energy.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orga1a0859" class="outline-4">
|
||||
<h4 id="orga1a0859"><span class="section-number-4">2.1.5</span> Exercise 5</h4>
|
||||
<div id="outline-container-org09ee903" class="outline-4">
|
||||
<h4 id="org09ee903"><span class="section-number-4">2.1.5</span> Exercise 5</h4>
|
||||
<div class="outline-text-4" id="text-2-1-5">
|
||||
<div class="exercise">
|
||||
<p>
|
||||
@ -1010,8 +1010,8 @@ Find the theoretical value of \(a\) for which \(\Psi\) is an eigenfunction of \(
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org92ebd7d" class="outline-5">
|
||||
<h5 id="org92ebd7d"><span class="section-number-5">2.1.5.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div id="outline-container-orgcc02f60" class="outline-5">
|
||||
<h5 id="orgcc02f60"><span class="section-number-5">2.1.5.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div class="outline-text-5" id="text-2-1-5-1">
|
||||
\begin{eqnarray*}
|
||||
E &=& \frac{\hat{H} \Psi}{\Psi} = - \frac{1}{2} \frac{\Delta \Psi}{\Psi} -
|
||||
@ -1031,8 +1031,8 @@ equal to -0.5 atomic units.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org5cca68c" class="outline-3">
|
||||
<h3 id="org5cca68c"><span class="section-number-3">2.2</span> Plot of the local energy along the \(x\) axis</h3>
|
||||
<div id="outline-container-org2f2d6bb" class="outline-3">
|
||||
<h3 id="org2f2d6bb"><span class="section-number-3">2.2</span> Plot of the local energy along the \(x\) axis</h3>
|
||||
<div class="outline-text-3" id="text-2-2">
|
||||
<div class="note">
|
||||
<p>
|
||||
@ -1043,8 +1043,8 @@ choose a grid which does not contain the origin.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org27f229d" class="outline-4">
|
||||
<h4 id="org27f229d"><span class="section-number-4">2.2.1</span> Exercise</h4>
|
||||
<div id="outline-container-orga518fc0" class="outline-4">
|
||||
<h4 id="orga518fc0"><span class="section-number-4">2.2.1</span> Exercise</h4>
|
||||
<div class="outline-text-4" id="text-2-2-1">
|
||||
<div class="exercise">
|
||||
<p>
|
||||
@ -1127,8 +1127,8 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgefbba7b" class="outline-5">
|
||||
<h5 id="orgefbba7b"><span class="section-number-5">2.2.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div id="outline-container-org13a7709" class="outline-5">
|
||||
<h5 id="org13a7709"><span class="section-number-5">2.2.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div class="outline-text-5" id="text-2-2-1-1">
|
||||
<p>
|
||||
<b>Python</b>
|
||||
@ -1203,8 +1203,8 @@ plt.savefig(<span style="color: #8b2252;">"plot_py.png"</span>)
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org6f7b212" class="outline-3">
|
||||
<h3 id="org6f7b212"><span class="section-number-3">2.3</span> Numerical estimation of the energy</h3>
|
||||
<div id="outline-container-orgcc96fb8" class="outline-3">
|
||||
<h3 id="orgcc96fb8"><span class="section-number-3">2.3</span> Numerical estimation of the energy</h3>
|
||||
<div class="outline-text-3" id="text-2-3">
|
||||
<p>
|
||||
If the space is discretized in small volume elements \(\mathbf{r}_i\)
|
||||
@ -1234,8 +1234,8 @@ The energy is biased because:
|
||||
</div>
|
||||
|
||||
|
||||
<div id="outline-container-org73d0044" class="outline-4">
|
||||
<h4 id="org73d0044"><span class="section-number-4">2.3.1</span> Exercise</h4>
|
||||
<div id="outline-container-org3a137bd" class="outline-4">
|
||||
<h4 id="org3a137bd"><span class="section-number-4">2.3.1</span> Exercise</h4>
|
||||
<div class="outline-text-4" id="text-2-3-1">
|
||||
<div class="exercise">
|
||||
<p>
|
||||
@ -1304,8 +1304,8 @@ To compile the Fortran and run it:
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org9fa7e9b" class="outline-5">
|
||||
<h5 id="org9fa7e9b"><span class="section-number-5">2.3.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div id="outline-container-orgc3bbb1c" class="outline-5">
|
||||
<h5 id="orgc3bbb1c"><span class="section-number-5">2.3.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div class="outline-text-5" id="text-2-3-1-1">
|
||||
<p>
|
||||
<b>Python</b>
|
||||
@ -1420,8 +1420,8 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org0ae7607" class="outline-3">
|
||||
<h3 id="org0ae7607"><span class="section-number-3">2.4</span> Variance of the local energy</h3>
|
||||
<div id="outline-container-orgda033ae" class="outline-3">
|
||||
<h3 id="orgda033ae"><span class="section-number-3">2.4</span> Variance of the local energy</h3>
|
||||
<div class="outline-text-3" id="text-2-4">
|
||||
<p>
|
||||
The variance of the local energy is a functional of \(\Psi\)
|
||||
@ -1448,8 +1448,8 @@ energy can be used as a measure of the quality of a wave function.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org85f88d6" class="outline-4">
|
||||
<h4 id="org85f88d6"><span class="section-number-4">2.4.1</span> Exercise (optional)</h4>
|
||||
<div id="outline-container-org65d32ac" class="outline-4">
|
||||
<h4 id="org65d32ac"><span class="section-number-4">2.4.1</span> Exercise (optional)</h4>
|
||||
<div class="outline-text-4" id="text-2-4-1">
|
||||
<div class="exercise">
|
||||
<p>
|
||||
@ -1460,8 +1460,8 @@ Prove that :
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgde76526" class="outline-5">
|
||||
<h5 id="orgde76526"><span class="section-number-5">2.4.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div id="outline-container-orgaf2eca8" class="outline-5">
|
||||
<h5 id="orgaf2eca8"><span class="section-number-5">2.4.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div class="outline-text-5" id="text-2-4-1-1">
|
||||
<p>
|
||||
\(\bar{E} = \langle E \rangle\) is a constant, so \(\langle \bar{E}
|
||||
@ -1480,8 +1480,8 @@ Prove that :
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div id="outline-container-org85a5fb7" class="outline-4">
|
||||
<h4 id="org85a5fb7"><span class="section-number-4">2.4.2</span> Exercise</h4>
|
||||
<div id="outline-container-orgaef7130" class="outline-4">
|
||||
<h4 id="orgaef7130"><span class="section-number-4">2.4.2</span> Exercise</h4>
|
||||
<div class="outline-text-4" id="text-2-4-2">
|
||||
<div class="exercise">
|
||||
<p>
|
||||
@ -1555,8 +1555,8 @@ To compile and run:
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org81ff0a9" class="outline-5">
|
||||
<h5 id="org81ff0a9"><span class="section-number-5">2.4.2.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div id="outline-container-org7feddd3" class="outline-5">
|
||||
<h5 id="org7feddd3"><span class="section-number-5">2.4.2.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div class="outline-text-5" id="text-2-4-2-1">
|
||||
<p>
|
||||
<b>Python</b>
|
||||
@ -1693,8 +1693,8 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org6efff28" class="outline-2">
|
||||
<h2 id="org6efff28"><span class="section-number-2">3</span> Variational Monte Carlo</h2>
|
||||
<div id="outline-container-org79f2368" class="outline-2">
|
||||
<h2 id="org79f2368"><span class="section-number-2">3</span> Variational Monte Carlo</h2>
|
||||
<div class="outline-text-2" id="text-3">
|
||||
<p>
|
||||
Numerical integration with deterministic methods is very efficient
|
||||
@ -1710,8 +1710,8 @@ interval.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org4d2f25c" class="outline-3">
|
||||
<h3 id="org4d2f25c"><span class="section-number-3">3.1</span> Computation of the statistical error</h3>
|
||||
<div id="outline-container-org4e200b0" class="outline-3">
|
||||
<h3 id="org4e200b0"><span class="section-number-3">3.1</span> Computation of the statistical error</h3>
|
||||
<div class="outline-text-3" id="text-3-1">
|
||||
<p>
|
||||
To compute the statistical error, you need to perform \(M\)
|
||||
@ -1751,8 +1751,8 @@ And the confidence interval is given by
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org59769bf" class="outline-4">
|
||||
<h4 id="org59769bf"><span class="section-number-4">3.1.1</span> Exercise</h4>
|
||||
<div id="outline-container-org9e7a67b" class="outline-4">
|
||||
<h4 id="org9e7a67b"><span class="section-number-4">3.1.1</span> Exercise</h4>
|
||||
<div class="outline-text-4" id="text-3-1-1">
|
||||
<div class="exercise">
|
||||
<p>
|
||||
@ -1790,8 +1790,8 @@ input array.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org53031b1" class="outline-5">
|
||||
<h5 id="org53031b1"><span class="section-number-5">3.1.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div id="outline-container-org7ce66b5" class="outline-5">
|
||||
<h5 id="org7ce66b5"><span class="section-number-5">3.1.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div class="outline-text-5" id="text-3-1-1-1">
|
||||
<p>
|
||||
<b>Python</b>
|
||||
@ -1850,8 +1850,8 @@ input array.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgda04982" class="outline-3">
|
||||
<h3 id="orgda04982"><span class="section-number-3">3.2</span> Uniform sampling in the box</h3>
|
||||
<div id="outline-container-org72f5650" class="outline-3">
|
||||
<h3 id="org72f5650"><span class="section-number-3">3.2</span> Uniform sampling in the box</h3>
|
||||
<div class="outline-text-3" id="text-3-2">
|
||||
<p>
|
||||
We will now perform our first Monte Carlo calculation to compute the
|
||||
@ -1912,8 +1912,8 @@ compute the statistical error.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org374dde3" class="outline-4">
|
||||
<h4 id="org374dde3"><span class="section-number-4">3.2.1</span> Exercise</h4>
|
||||
<div id="outline-container-org16e93f6" class="outline-4">
|
||||
<h4 id="org16e93f6"><span class="section-number-4">3.2.1</span> Exercise</h4>
|
||||
<div class="outline-text-4" id="text-3-2-1">
|
||||
<div class="exercise">
|
||||
<p>
|
||||
@ -2013,8 +2013,8 @@ well as the index of the current step.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org44796a9" class="outline-5">
|
||||
<h5 id="org44796a9"><span class="section-number-5">3.2.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div id="outline-container-orgfdffcd3" class="outline-5">
|
||||
<h5 id="orgfdffcd3"><span class="section-number-5">3.2.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div class="outline-text-5" id="text-3-2-1-1">
|
||||
<p>
|
||||
<b>Python</b>
|
||||
@ -2128,8 +2128,8 @@ E = -0.49518773675598715 +/- 5.2391494923686175E-004
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org4530877" class="outline-3">
|
||||
<h3 id="org4530877"><span class="section-number-3">3.3</span> Metropolis sampling with \(\Psi^2\)</h3>
|
||||
<div id="outline-container-org02cf3aa" class="outline-3">
|
||||
<h3 id="org02cf3aa"><span class="section-number-3">3.3</span> Metropolis sampling with \(\Psi^2\)</h3>
|
||||
<div class="outline-text-3" id="text-3-3">
|
||||
<p>
|
||||
We will now use the square of the wave function to sample random
|
||||
@ -2262,14 +2262,14 @@ compromise for the current problem.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
NOTE: below, we use the symbol dt to denote dL since we will use
|
||||
NOTE: below, we use the symbol \(\delta t\) to denote \(\delta L\) since we will use
|
||||
the same variable later on to store a time step.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="outline-container-orgc4d1979" class="outline-4">
|
||||
<h4 id="orgc4d1979"><span class="section-number-4">3.3.1</span> Exercise</h4>
|
||||
<div id="outline-container-org72f25a5" class="outline-4">
|
||||
<h4 id="org72f25a5"><span class="section-number-4">3.3.1</span> Exercise</h4>
|
||||
<div class="outline-text-4" id="text-3-3-1">
|
||||
<div class="exercise">
|
||||
<p>
|
||||
@ -2376,8 +2376,8 @@ Can you observe a reduction in the statistical error?
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org035fdd6" class="outline-5">
|
||||
<h5 id="org035fdd6"><span class="section-number-5">3.3.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div id="outline-container-orgd9ea31c" class="outline-5">
|
||||
<h5 id="orgd9ea31c"><span class="section-number-5">3.3.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div class="outline-text-5" id="text-3-3-1-1">
|
||||
<p>
|
||||
<b>Python</b>
|
||||
@ -2522,8 +2522,8 @@ A = 0.51695266666666673 +/- 4.0445505648997396E-004
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org7c86c4f" class="outline-3">
|
||||
<h3 id="org7c86c4f"><span class="section-number-3">3.4</span> Gaussian random number generator</h3>
|
||||
<div id="outline-container-org0e35321" class="outline-3">
|
||||
<h3 id="org0e35321"><span class="section-number-3">3.4</span> Gaussian random number generator</h3>
|
||||
<div class="outline-text-3" id="text-3-4">
|
||||
<p>
|
||||
To obtain Gaussian-distributed random numbers, you can apply the
|
||||
@ -2586,8 +2586,8 @@ In Python, you can use the <a href="https://numpy.org/doc/stable/reference/rando
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org4981ac1" class="outline-3">
|
||||
<h3 id="org4981ac1"><span class="section-number-3">3.5</span> Generalized Metropolis algorithm</h3>
|
||||
<div id="outline-container-org46c79a2" class="outline-3">
|
||||
<h3 id="org46c79a2"><span class="section-number-3">3.5</span> Generalized Metropolis algorithm</h3>
|
||||
<div class="outline-text-3" id="text-3-5">
|
||||
<p>
|
||||
One can use more efficient numerical schemes to move the electrons by choosing a smarter expression for the transition probability.
|
||||
@ -2705,12 +2705,7 @@ Compute a new position \(\mathbf{r'} = \mathbf{r}_n +
|
||||
<p>
|
||||
Evaluate \(\Psi\) and \(\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\) at the new position
|
||||
</p></li>
|
||||
<li>Compute the ratio $A = \frac{T(\mathbf{r}<sub>n+1</sub> → \mathbf{r}<sub>n</sub>) P(\mathbf{r}<sub>n+1</sub>)}</li>
|
||||
</ol>
|
||||
<p>
|
||||
{T(\mathbf{r}<sub>n</sub> → \mathbf{r}<sub>n+1</sub>) P(\mathbf{r}<sub>n</sub>)}$
|
||||
</p>
|
||||
<ol class="org-ol">
|
||||
<li>Compute the ratio \(A = \frac{T(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})}{T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})}\)</li>
|
||||
<li>Draw a uniform random number \(v \in [0,1]\)</li>
|
||||
<li>if \(v \le A\), accept the move : set \(\mathbf{r}_{n+1} = \mathbf{r'}\)</li>
|
||||
<li>else, reject the move : set \(\mathbf{r}_{n+1} = \mathbf{r}_n\)</li>
|
||||
@ -2719,8 +2714,8 @@ Evaluate \(\Psi\) and \(\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\) at th
|
||||
</div>
|
||||
|
||||
|
||||
<div id="outline-container-orgab2ad4b" class="outline-4">
|
||||
<h4 id="orgab2ad4b"><span class="section-number-4">3.5.1</span> Exercise 1</h4>
|
||||
<div id="outline-container-org9114081" class="outline-4">
|
||||
<h4 id="org9114081"><span class="section-number-4">3.5.1</span> Exercise 1</h4>
|
||||
<div class="outline-text-4" id="text-3-5-1">
|
||||
<div class="exercise">
|
||||
<p>
|
||||
@ -2754,8 +2749,8 @@ Write a function to compute the drift vector \(\frac{\nabla \Psi(\mathbf{r})}{\P
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org1c15cfb" class="outline-5">
|
||||
<h5 id="org1c15cfb"><span class="section-number-5">3.5.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div id="outline-container-org232a214" class="outline-5">
|
||||
<h5 id="org232a214"><span class="section-number-5">3.5.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div class="outline-text-5" id="text-3-5-1-1">
|
||||
<p>
|
||||
<b>Python</b>
|
||||
@ -2788,8 +2783,8 @@ Write a function to compute the drift vector \(\frac{\nabla \Psi(\mathbf{r})}{\P
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org0a89fa9" class="outline-4">
|
||||
<h4 id="org0a89fa9"><span class="section-number-4">3.5.2</span> Exercise 2</h4>
|
||||
<div id="outline-container-orgff165dc" class="outline-4">
|
||||
<h4 id="orgff165dc"><span class="section-number-4">3.5.2</span> Exercise 2</h4>
|
||||
<div class="outline-text-4" id="text-3-5-2">
|
||||
<div class="exercise">
|
||||
<p>
|
||||
@ -2883,8 +2878,8 @@ Modify the previous program to introduce the drift-diffusion scheme.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org298a5fb" class="outline-5">
|
||||
<h5 id="org298a5fb"><span class="section-number-5">3.5.2.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div id="outline-container-orgd31a9d6" class="outline-5">
|
||||
<h5 id="orgd31a9d6"><span class="section-number-5">3.5.2.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div class="outline-text-5" id="text-3-5-2-1">
|
||||
<p>
|
||||
<b>Python</b>
|
||||
@ -3070,12 +3065,12 @@ A = 0.78839866666666658 +/- 3.2503783452043152E-004
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org0bd32b3" class="outline-2">
|
||||
<h2 id="org0bd32b3"><span class="section-number-2">4</span> Diffusion Monte Carlo   <span class="tag"><span class="solution">solution</span></span></h2>
|
||||
<div id="outline-container-orgb642136" class="outline-2">
|
||||
<h2 id="orgb642136"><span class="section-number-2">4</span> Diffusion Monte Carlo   <span class="tag"><span class="solution">solution</span></span></h2>
|
||||
<div class="outline-text-2" id="text-4">
|
||||
</div>
|
||||
<div id="outline-container-orgf29da22" class="outline-3">
|
||||
<h3 id="orgf29da22"><span class="section-number-3">4.1</span> Schrödinger equation in imaginary time</h3>
|
||||
<div id="outline-container-org896d62d" class="outline-3">
|
||||
<h3 id="org896d62d"><span class="section-number-3">4.1</span> Schrödinger equation in imaginary time</h3>
|
||||
<div class="outline-text-3" id="text-4-1">
|
||||
<p>
|
||||
Consider the time-dependent Schrödinger equation:
|
||||
@ -3088,7 +3083,7 @@ Consider the time-dependent Schrödinger equation:
|
||||
</p>
|
||||
|
||||
<p>
|
||||
where we introduced a shift in the energy, \(E_{\rm ref}\), which will come useful below.
|
||||
where we introduced a shift in the energy, \(E_{\rm ref}\), for reasons which will become apparent below.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
@ -3124,13 +3119,13 @@ Now, if we replace the time variable \(t\) by an imaginary time variable
|
||||
</p>
|
||||
|
||||
<p>
|
||||
where \(\psi(\mathbf{r},\tau) = \Psi(\mathbf{r},-i\,t)\)
|
||||
where \(\psi(\mathbf{r},\tau) = \Psi(\mathbf{r},-i\,\tau)\)
|
||||
and
|
||||
</p>
|
||||
|
||||
\begin{eqnarray*}
|
||||
\psi(\mathbf{r},\tau) &=& \sum_k a_k \exp( -(E_k-E_{\rm ref})\, \tau) \phi_k(\mathbf{r})\\
|
||||
&=& \exp(-(E_0-E_{\rm ref})\, \tau)\sum_k a_k \exp( -(E_k-E_0)\, \tau) \phi_k(\mathbf{r})\,.
|
||||
\psi(\mathbf{r},\tau) &=& \sum_k a_k \exp( -(E_k-E_{\rm ref})\, \tau) \Phi_k(\mathbf{r})\\
|
||||
&=& \exp(-(E_0-E_{\rm ref})\, \tau)\sum_k a_k \exp( -(E_k-E_0)\, \tau) \Phi_k(\mathbf{r})\,.
|
||||
\end{eqnarray*}
|
||||
|
||||
<p>
|
||||
@ -3143,8 +3138,8 @@ system.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgd5273df" class="outline-3">
|
||||
<h3 id="orgd5273df"><span class="section-number-3">4.2</span> Diffusion and branching</h3>
|
||||
<div id="outline-container-org10e850c" class="outline-3">
|
||||
<h3 id="org10e850c"><span class="section-number-3">4.2</span> Diffusion and branching</h3>
|
||||
<div class="outline-text-3" id="text-4-2">
|
||||
<p>
|
||||
The imaginary-time Schrödinger equation can be explicitly written in terms of the kinetic and
|
||||
@ -3213,8 +3208,8 @@ so-called branching process).
|
||||
</p>
|
||||
|
||||
<p>
|
||||
<i>Diffusion Monte Carlo</i> (DMC) consists in obtaining the ground state of a
|
||||
system by simulating the Schrödinger equation in imaginary time, by
|
||||
In <i>Diffusion Monte Carlo</i> (DMC), one onbtains the ground state of a
|
||||
system by simulating the Schrödinger equation in imaginary time via
|
||||
the combination of a diffusion process and a branching process.
|
||||
</p>
|
||||
|
||||
@ -3241,12 +3236,12 @@ Therefore, in both cases, you are dealing with a "Bosonic" ground state.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orge2f84dc" class="outline-3">
|
||||
<h3 id="orge2f84dc"><span class="section-number-3">4.3</span> Importance sampling</h3>
|
||||
<div id="outline-container-org308a035" class="outline-3">
|
||||
<h3 id="org308a035"><span class="section-number-3">4.3</span> Importance sampling</h3>
|
||||
<div class="outline-text-3" id="text-4-3">
|
||||
<p>
|
||||
In a molecular system, the potential is far from being constant
|
||||
and diverges at inter-particle coalescence points. Hence, when the
|
||||
and, in fact, diverges at the inter-particle coalescence points. Hence, when the
|
||||
rate equation is simulated, it results in very large fluctuations
|
||||
in the numbers of particles, making the calculations impossible in
|
||||
practice.
|
||||
@ -3279,7 +3274,7 @@ Defining \(\Pi(\mathbf{r},\tau) = \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r})\), (s
|
||||
The new "kinetic energy" can be simulated by the drift-diffusion
|
||||
scheme presented in the previous section (VMC).
|
||||
The new "potential" is the local energy, which has smaller fluctuations
|
||||
when \(\Psi_T\) gets closer to the exact wave function. It can be simulated by
|
||||
when \(\Psi_T\) gets closer to the exact wave function. This term can be simulated by
|
||||
changing the number of particles according to \(\exp\left[ -\delta t\,
|
||||
\left(E_L(\mathbf{r}) - E_{\rm ref}\right)\right]\)
|
||||
where \(E_{\rm ref}\) is the constant we had introduced above, which is adjusted to
|
||||
@ -3338,8 +3333,8 @@ energies computed with the trial wave function.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org13921db" class="outline-4">
|
||||
<h4 id="org13921db"><span class="section-number-4">4.3.1</span> Appendix : Details of the Derivation</h4>
|
||||
<div id="outline-container-orgdd63af1" class="outline-4">
|
||||
<h4 id="orgdd63af1"><span class="section-number-4">4.3.1</span> Appendix : Details of the Derivation</h4>
|
||||
<div class="outline-text-4" id="text-4-3-1">
|
||||
<p>
|
||||
\[
|
||||
@ -3400,8 +3395,8 @@ Defining \(\Pi(\mathbf{r},t) = \psi(\mathbf{r},\tau)
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org2082417" class="outline-3">
|
||||
<h3 id="org2082417"><span class="section-number-3">4.4</span> Pure Diffusion Monte Carlo (PDMC)</h3>
|
||||
<div id="outline-container-orga67a8aa" class="outline-3">
|
||||
<h3 id="orga67a8aa"><span class="section-number-3">4.4</span> Pure Diffusion Monte Carlo (PDMC)</h3>
|
||||
<div class="outline-text-3" id="text-4-4">
|
||||
<p>
|
||||
Instead of having a variable number of particles to simulate the
|
||||
@ -3437,12 +3432,7 @@ Compute a new position \(\mathbf{r'} = \mathbf{r}_n +
|
||||
<p>
|
||||
Evaluate \(\Psi\) and \(\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\) at the new position
|
||||
</p></li>
|
||||
<li>Compute the ratio $A = \frac{T(\mathbf{r}<sub>n+1</sub> → \mathbf{r}<sub>n</sub>) P(\mathbf{r}<sub>n+1</sub>)}</li>
|
||||
</ol>
|
||||
<p>
|
||||
{T(\mathbf{r}<sub>n</sub> → \mathbf{r}<sub>n+1</sub>) P(\mathbf{r}<sub>n</sub>)}$
|
||||
</p>
|
||||
<ol class="org-ol">
|
||||
<li>Compute the ratio \(A = \frac{T(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})}{T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})}\)</li>
|
||||
<li>Draw a uniform random number \(v \in [0,1]\)</li>
|
||||
<li>if \(v \le A\), accept the move : set \(\mathbf{r}_{n+1} = \mathbf{r'}\)</li>
|
||||
<li>else, reject the move : set \(\mathbf{r}_{n+1} = \mathbf{r}_n\)</li>
|
||||
@ -3460,37 +3450,29 @@ Some comments are needed:
|
||||
</ul>
|
||||
|
||||
\begin{eqnarray*}
|
||||
E = \frac{\sum_{i=1}{N_{\rm MC}} E_L(\mathbf{r}_i) W(\mathbf{r}_i, i\delta t)}{\sum_{i=1}{N_{\rm MC}} W(\mathbf{r}_i, i\delta t)}
|
||||
\end{eqnarray}
|
||||
|
||||
- The result will be affected by a time-step error (the finite size of $\delta t$) and one
|
||||
has in principle to extrapolate to the limit $\delta t \rightarrow 0$. This amounts to fitting
|
||||
the energy computed for multiple values of $\delta t$.
|
||||
- The accept/reject step (steps 2-5 in the algorithm) is not in principle needed for the correctness of
|
||||
the DMC algorithm. However, its use reduces si
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
The wave function becomes
|
||||
|
||||
\[
|
||||
\psi(\mathbf{r},\tau) = \Psi_T(\mathbf{r}) W(\mathbf{r},\tau)
|
||||
\]
|
||||
|
||||
and the expression of the fixed-node DMC energy is
|
||||
|
||||
\begin{eqnarray*}
|
||||
E(\tau) & = & \frac{\int \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) E_L(\mathbf{r}) d\mathbf{r}}
|
||||
{\int \psi(\mathbf{r},\tau) \Psi_T(\mathbf{r}) d\mathbf{r}} \\
|
||||
& = & \frac{\int \left[ \Psi_T(\mathbf{r}) \right]^2 W(\mathbf{r},\tau) E_L(\mathbf{r}) d\mathbf{r}}
|
||||
{\int \left[ \Psi_T(\mathbf{r}) \right]^2 W(\mathbf{r},\tau) d\mathbf{r}} \\
|
||||
E = \frac{\sum_{k=1}{N_{\rm MC}} E_L(\mathbf{r}_k) W(\mathbf{r}_k, k\delta t)}{\sum_{k=1}{N_{\rm MC}} W(\mathbf{r}_k, k\delta t)}
|
||||
\end{eqnarray*}
|
||||
|
||||
<ul class="org-ul">
|
||||
<li>The result will be affected by a time-step error (the finite size of \(\delta t\)) and one</li>
|
||||
</ul>
|
||||
<p>
|
||||
This algorithm is less stable than the branching algorithm: it
|
||||
has in principle to extrapolate to the limit \(\delta t \rightarrow 0\). This amounts to fitting
|
||||
the energy computed for multiple values of \(\delta t\).
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Here, you will be using a small enough time-step and you should not worry about the extrapolation.
|
||||
</p>
|
||||
<ul class="org-ul">
|
||||
<li>The accept/reject step (steps 2-5 in the algorithm) is in principle not needed for the correctness of</li>
|
||||
</ul>
|
||||
<p>
|
||||
the DMC algorithm. However, its use reduces significantly the time-step error.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
PDMC algorithm is less stable than the branching algorithm: it
|
||||
requires to have a value of \(E_\text{ref}\) which is close to the
|
||||
fixed-node energy, and a good trial wave function. Its big
|
||||
advantage is that it is very easy to program starting from a VMC
|
||||
@ -3499,13 +3481,13 @@ code, so this is what we will do in the next section.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org7342b6d" class="outline-3">
|
||||
<h3 id="org7342b6d"><span class="section-number-3">4.5</span> Hydrogen atom</h3>
|
||||
<div id="outline-container-org08cac2c" class="outline-3">
|
||||
<h3 id="org08cac2c"><span class="section-number-3">4.5</span> Hydrogen atom</h3>
|
||||
<div class="outline-text-3" id="text-4-5">
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgc9cbd6b" class="outline-4">
|
||||
<h4 id="orgc9cbd6b"><span class="section-number-4">4.5.1</span> Exercise</h4>
|
||||
<div id="outline-container-orged492a0" class="outline-4">
|
||||
<h4 id="orged492a0"><span class="section-number-4">4.5.1</span> Exercise</h4>
|
||||
<div class="outline-text-4" id="text-4-5-1">
|
||||
<div class="exercise">
|
||||
<p>
|
||||
@ -3604,8 +3586,8 @@ energy of H for any value of \(a\).
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org5b7ac88" class="outline-5">
|
||||
<h5 id="org5b7ac88"><span class="section-number-5">4.5.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div id="outline-container-orgde645d7" class="outline-5">
|
||||
<h5 id="orgde645d7"><span class="section-number-5">4.5.1.1</span> Solution   <span class="tag"><span class="solution">solution</span></span></h5>
|
||||
<div class="outline-text-5" id="text-4-5-1-1">
|
||||
<p>
|
||||
<b>Python</b>
|
||||
@ -3821,8 +3803,8 @@ A = 0.98788066666666663 +/- 7.2889356133441110E-005
|
||||
</div>
|
||||
|
||||
|
||||
<div id="outline-container-orgff35458" class="outline-3">
|
||||
<h3 id="orgff35458"><span class="section-number-3">4.6</span> <span class="todo TODO">TODO</span> H<sub>2</sub></h3>
|
||||
<div id="outline-container-orgeaede30" class="outline-3">
|
||||
<h3 id="orgeaede30"><span class="section-number-3">4.6</span> <span class="todo TODO">TODO</span> H<sub>2</sub></h3>
|
||||
<div class="outline-text-3" id="text-4-6">
|
||||
<p>
|
||||
We will now consider the H<sub>2</sub> molecule in a minimal basis composed of the
|
||||
@ -3843,8 +3825,8 @@ the nuclei.
|
||||
</div>
|
||||
|
||||
|
||||
<div id="outline-container-orgfed2921" class="outline-2">
|
||||
<h2 id="orgfed2921"><span class="section-number-2">5</span> <span class="todo TODO">TODO</span> <code>[0/3]</code> Last things to do</h2>
|
||||
<div id="outline-container-orgd092c37" class="outline-2">
|
||||
<h2 id="orgd092c37"><span class="section-number-2">5</span> <span class="todo TODO">TODO</span> <code>[0/3]</code> Last things to do</h2>
|
||||
<div class="outline-text-2" id="text-5">
|
||||
<ul class="org-ul">
|
||||
<li class="off"><code>[ ]</code> Give some hints of how much time is required for each section</li>
|
||||
@ -3860,7 +3842,7 @@ the H\(_2\) molecule at $R$=1.4010 bohr. Answer: 0.17406 a.u.</li>
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Anthony Scemama, Claudia Filippi</p>
|
||||
<p class="date">Created: 2021-02-01 Mon 12:52</p>
|
||||
<p class="date">Created: 2021-02-01 Mon 20:57</p>
|
||||
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
|
||||
</div>
|
||||
</body>
|
||||
|
Loading…
Reference in New Issue
Block a user