diff --git a/index.html b/index.html index d7f44f1..db29ff8 100644 --- a/index.html +++ b/index.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- +[0/3]
Last things to do[0/3]
Last things to doThis website contains the QMC tutorial of the 2021 LTTC winter school @@ -515,8 +515,8 @@ coordinates, etc).
For a given system with Hamiltonian \(\hat{H}\) and wave function \(\Psi\), we define the local energy as @@ -599,8 +599,8 @@ energy computed over these configurations:
In this section, we consider the hydrogen atom with the following @@ -629,8 +629,8 @@ To do that, we will compute the local energy and check whether it is constant.
You will now program all quantities needed to compute the local energy of the H atom for the given wave function. @@ -657,8 +657,8 @@ to catch the error.
@@ -703,8 +703,8 @@ and returns the potential.
Python @@ -745,8 +745,8 @@ and returns the potential.
@@ -781,8 +781,8 @@ input arguments, and returns a scalar.
Python @@ -809,8 +809,8 @@ input arguments, and returns a scalar.
@@ -891,8 +891,8 @@ Therefore, the local kinetic energy is
Python @@ -933,8 +933,8 @@ Therefore, the local kinetic energy is
@@ -993,8 +993,8 @@ are calling is yours.
Python @@ -1025,8 +1025,8 @@ are calling is yours.
@@ -1036,8 +1036,8 @@ Find the theoretical value of \(a\) for which \(\Psi\) is an eigenfunction of \(
The program you will write in this section will be written in @@ -1089,8 +1089,8 @@ In Fortran, you will need to compile all the source files together:
@@ -1184,8 +1184,8 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
Python @@ -1262,8 +1262,8 @@ plt.savefig("plot_py.png")
If the space is discretized in small volume elements \(\mathbf{r}_i\) @@ -1293,8 +1293,8 @@ The energy is biased because:
@@ -1365,8 +1365,8 @@ To compile the Fortran and run it:
Python @@ -1483,8 +1483,8 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002
The variance of the local energy is a functional of \(\Psi\) @@ -1511,8 +1511,8 @@ energy can be used as a measure of the quality of a wave function.
@@ -1523,8 +1523,8 @@ Prove that :
\(\bar{E} = \langle E \rangle\) is a constant, so \(\langle \bar{E} @@ -1543,8 +1543,8 @@ Prove that :
@@ -1620,8 +1620,8 @@ To compile and run:
Python @@ -1760,8 +1760,8 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814
Numerical integration with deterministic methods is very efficient @@ -1777,8 +1777,8 @@ interval.
To compute the statistical error, you need to perform \(M\) @@ -1818,8 +1818,8 @@ And the confidence interval is given by
@@ -1859,8 +1859,8 @@ input array.
Python @@ -1921,8 +1921,8 @@ input array.
We will now perform our first Monte Carlo calculation to compute the @@ -1983,8 +1983,8 @@ compute the statistical error.
@@ -2086,8 +2086,8 @@ well as the index of the current step.
Python @@ -2193,8 +2193,8 @@ E = -0.48084122147238995 +/- 2.4983775878329355E-003
We will now use the square of the wave function to sample random @@ -2290,13 +2290,13 @@ The algorithm is summarized as follows:
If the box is infinitely small, the ratio will be very close @@ -2349,8 +2349,8 @@ the same variable later on to store a time step.
@@ -2459,8 +2459,8 @@ Can you observe a reduction in the statistical error?
Python @@ -2607,8 +2607,8 @@ A = 0.50762633333333318 +/- 3.4601756760043725E-004
One can use more efficient numerical schemes to move the electrons by choosing a smarter expression for the transition probability. @@ -2667,7 +2667,7 @@ choose to draw Gaussian random numbers with zero mean and variance
Furthermore, to sample the density even better, we can "push" the electrons into in the regions of high probability, and "pull" them away from -the low-probability regions. This will ncrease the +the low-probability regions. This will increase the acceptance ratios and improve the sampling.
@@ -2696,7 +2696,7 @@ drifted diffusion with transition probability:-The corrsponding move is proposed as +The corresponding move is proposed as
@@ -2718,24 +2718,19 @@ The algorithm of the previous exercise is only slighlty modified as:
-Compute a new position \(\mathbf{r'} = \mathbf{r}_n + - \delta t\, \frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})} + \chi\) -
- --Evaluate \(\Psi\) and \(\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\) at the new position -