1
0
mirror of https://github.com/TREX-CoE/qmc-lttc.git synced 2024-12-21 11:53:58 +01:00

OK up to Metropolis

This commit is contained in:
Anthony Scemama 2021-01-26 00:22:37 +01:00
parent f13fb07ed3
commit 336cc911c4
5 changed files with 114 additions and 30 deletions

95
QMC.org
View File

@ -114,6 +114,17 @@
~hydrogen.py~ if you use Python, or ~hydrogen.f90~ is you use ~hydrogen.py~ if you use Python, or ~hydrogen.f90~ is you use
Fortran. Fortran.
#+begin_note
- When computing a square root in $\mathbb{R}$, *always* make sure
that the argument of the square root is non-negative.
- When you divide, *always* make sure that you will not divide by zero
If a /floating-point exception/ can occur, you should make a test
to catch the error.
#+end_note
#+end_note
*** Exercise 1 *** Exercise 1
#+begin_exercise #+begin_exercise
@ -146,7 +157,9 @@ def potential(r):
import numpy as np import numpy as np
def potential(r): def potential(r):
return -1. / np.sqrt(np.dot(r,r)) distance = np.sqrt(np.dot(r,r))
assert (distance > 0)
return -1. / distance
#+END_SRC #+END_SRC
**** Fortran **** Fortran
@ -163,7 +176,13 @@ end function potential
double precision function potential(r) double precision function potential(r)
implicit none implicit none
double precision, intent(in) :: r(3) double precision, intent(in) :: r(3)
potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) double precision :: distance
distance = dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
if (distance > 0.d0) then
potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
else
stop 'potential at r=0.d0 diverges'
end if
end function potential end function potential
#+END_SRC #+END_SRC
@ -173,7 +192,6 @@ end function potential
The function accepts a scalar =a= and a 3-dimensional vector =r= as The function accepts a scalar =a= and a 3-dimensional vector =r= as
input arguments, and returns a scalar. input arguments, and returns a scalar.
#+end_exercise #+end_exercise
**** Python **** Python
#+BEGIN_SRC python :results none :tangle none #+BEGIN_SRC python :results none :tangle none
@ -251,7 +269,9 @@ def kinetic(a,r):
**** Python :solution: **** Python :solution:
#+BEGIN_SRC python :results none #+BEGIN_SRC python :results none
def kinetic(a,r): def kinetic(a,r):
return -0.5 * (a**2 - (2.*a)/np.sqrt(np.dot(r,r))) distance = np.sqrt(np.dot(r,r))
assert (distance > 0.)
return -0.5 * (a**2 - (2.*a)/distance)
#+END_SRC #+END_SRC
**** Fortran **** Fortran
@ -268,8 +288,13 @@ end function kinetic
double precision function kinetic(a,r) double precision function kinetic(a,r)
implicit none implicit none
double precision, intent(in) :: a, r(3) double precision, intent(in) :: a, r(3)
kinetic = -0.5d0 * (a*a - (2.d0*a) / & double precision :: distance
dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) ) distance = dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
if (distance > 0.d0) then
kinetic = -0.5d0 * (a*a - (2.d0*a) / distance)
else
stop 'kinetic energy diverges at r=0'
end if
end function kinetic end function kinetic
#+END_SRC #+END_SRC
@ -323,6 +348,11 @@ end function e_loc
:header-args:f90: :tangle plot_hydrogen.f90 :header-args:f90: :tangle plot_hydrogen.f90
:END: :END:
#+begin_note
The potential and the kinetic energy both diverge at $r=0$, so we
choose a grid which does not contain the origin.
#+end_note
*** Exercise *** Exercise
#+begin_exercise #+begin_exercise
For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the
@ -833,7 +863,7 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
: a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814270846534 : a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814270846534
* TODO Variational Monte Carlo * Variational Monte Carlo
Numerical integration with deterministic methods is very efficient Numerical integration with deterministic methods is very efficient
in low dimensions. When the number of dimensions becomes large, in low dimensions. When the number of dimensions becomes large,
@ -844,7 +874,7 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
to the discretization of space, and compute a statistical confidence to the discretization of space, and compute a statistical confidence
interval. interval.
** TODO Computation of the statistical error ** Computation of the statistical error
:PROPERTIES: :PROPERTIES:
:header-args:python: :tangle qmc_stats.py :header-args:python: :tangle qmc_stats.py
:header-args:f90: :tangle qmc_stats.f90 :header-args:f90: :tangle qmc_stats.f90
@ -853,7 +883,7 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
To compute the statistical error, you need to perform $M$ To compute the statistical error, you need to perform $M$
independent Monte Carlo calculations. You will obtain $M$ different independent Monte Carlo calculations. You will obtain $M$ different
estimates of the energy, which are expected to have a Gaussian estimates of the energy, which are expected to have a Gaussian
distribution by the central limit theorem. distribution according to the [[https://en.wikipedia.org/wiki/Central_limit_theorem][Central Limit Theorem]].
The estimate of the energy is The estimate of the energy is
@ -879,26 +909,51 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
input array. input array.
#+end_exercise #+end_exercise
*Python* **** Python
#+BEGIN_SRC python :results none #+BEGIN_SRC python :results none :tangle none
from math import sqrt
def ave_error(arr):
#TODO
return (average, error)
#+END_SRC
**** Python :solution:
#+BEGIN_SRC python :results none
from math import sqrt from math import sqrt
def ave_error(arr): def ave_error(arr):
M = len(arr) M = len(arr)
assert (M>1) assert(M>0)
average = sum(arr)/M if M == 1:
variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] ) return (arr[0], 0.)
return (average, sqrt(variance/M)) else:
#+END_SRC average = sum(arr)/M
variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] )
error = sqrt(variance/M)
return (average, error)
#+END_SRC
*Fortran* **** Fortran
#+BEGIN_SRC f90 #+BEGIN_SRC f90
subroutine ave_error(x,n,ave,err)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: x(n)
double precision, intent(out) :: ave, err
! TODO
end subroutine ave_error
#+END_SRC
**** Fortran :solution:
#+BEGIN_SRC f90
subroutine ave_error(x,n,ave,err) subroutine ave_error(x,n,ave,err)
implicit none implicit none
integer, intent(in) :: n integer, intent(in) :: n
double precision, intent(in) :: x(n) double precision, intent(in) :: x(n)
double precision, intent(out) :: ave, err double precision, intent(out) :: ave, err
double precision :: variance double precision :: variance
if (n == 1) then if (n < 1) then
stop 'n<1 in ave_error'
else if (n == 1) then
ave = x(1) ave = x(1)
err = 0.d0 err = 0.d0
else else
@ -907,7 +962,7 @@ subroutine ave_error(x,n,ave,err)
err = dsqrt(variance/dble(n)) err = dsqrt(variance/dble(n))
endif endif
end subroutine ave_error end subroutine ave_error
#+END_SRC #+END_SRC
** TODO Uniform sampling in the box ** TODO Uniform sampling in the box
:PROPERTIES: :PROPERTIES:

View File

@ -1,7 +1,13 @@
double precision function potential(r) double precision function potential(r)
implicit none implicit none
double precision, intent(in) :: r(3) double precision, intent(in) :: r(3)
potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) double precision :: distance
distance = dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
if (distance > 0.d0) then
potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
else
stop 'potential at r=0.d0 diverges'
end if
end function potential end function potential
double precision function psi(a, r) double precision function psi(a, r)
@ -13,8 +19,13 @@ end function psi
double precision function kinetic(a,r) double precision function kinetic(a,r)
implicit none implicit none
double precision, intent(in) :: a, r(3) double precision, intent(in) :: a, r(3)
kinetic = -0.5d0 * (a*a - (2.d0*a) / & double precision :: distance
dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) ) distance = dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )
if (distance > 0.d0) then
kinetic = -0.5d0 * (a*a - (2.d0*a) / distance)
else
stop 'kinetic energy diverges at r=0'
end if
end function kinetic end function kinetic
double precision function e_loc(a,r) double precision function e_loc(a,r)

View File

@ -1,13 +1,17 @@
import numpy as np import numpy as np
def potential(r): def potential(r):
return -1. / np.sqrt(np.dot(r,r)) distance = np.sqrt(np.dot(r,r))
assert (distance > 0)
return -1. / distance
def psi(a, r): def psi(a, r):
return np.exp(-a*np.sqrt(np.dot(r,r))) return np.exp(-a*np.sqrt(np.dot(r,r)))
def kinetic(a,r): def kinetic(a,r):
return -0.5 * (a**2 - (2.*a)/np.sqrt(np.dot(r,r))) distance = np.sqrt(np.dot(r,r))
assert (distance > 0.)
return -0.5 * (a**2 - (2.*a)/distance)
def e_loc(a,r): def e_loc(a,r):
return kinetic(a,r) + potential(r) return kinetic(a,r) + potential(r)

View File

@ -1,10 +1,20 @@
subroutine ave_error(x,n,ave,err)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: x(n)
double precision, intent(out) :: ave, err
! TODO
end subroutine ave_error
subroutine ave_error(x,n,ave,err) subroutine ave_error(x,n,ave,err)
implicit none implicit none
integer, intent(in) :: n integer, intent(in) :: n
double precision, intent(in) :: x(n) double precision, intent(in) :: x(n)
double precision, intent(out) :: ave, err double precision, intent(out) :: ave, err
double precision :: variance double precision :: variance
if (n == 1) then if (n < 1) then
stop 'n<1 in ave_error'
else if (n == 1) then
ave = x(1) ave = x(1)
err = 0.d0 err = 0.d0
else else

View File

@ -1,7 +1,11 @@
from math import sqrt from math import sqrt
def ave_error(arr): def ave_error(arr):
M = len(arr) M = len(arr)
assert (M>1) assert(M>0)
average = sum(arr)/M if M == 1:
variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] ) return (arr[0], 0.)
return (average, sqrt(variance/M)) else:
average = sum(arr)/M
variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] )
error = sqrt(variance/M)
return (average, error)