diff --git a/index.html b/index.html index 3ae2a1c..72db806 100644 --- a/index.html +++ b/index.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- +[0/3]
Last things to do[0/3]
Last things to doThis website contains the QMC tutorial of the 2021 LTTC winter school @@ -514,8 +513,8 @@ coordinates, etc).
For a given system with Hamiltonian \(\hat{H}\) and wave function \(\Psi\), we define the local energy as @@ -593,8 +592,8 @@ $$ E ≈ \frac{1}{N\rm MC} ∑i=1N\rm MC
In this section, we consider the hydrogen atom with the following @@ -623,8 +622,8 @@ To do that, we will compute the local energy and check whether it is constant.
You will now program all quantities needed to compute the local energy of the H atom for the given wave function. @@ -651,8 +650,8 @@ to catch the error.
@@ -696,8 +695,8 @@ and returns the potential.
Python @@ -737,8 +736,8 @@ and returns the potential.
@@ -773,8 +772,8 @@ input arguments, and returns a scalar.
Python @@ -801,8 +800,8 @@ input arguments, and returns a scalar.
@@ -883,8 +882,8 @@ Therefore, the local kinetic energy is
Python @@ -925,8 +924,8 @@ Therefore, the local kinetic energy is
@@ -969,8 +968,8 @@ local kinetic energy.
Python @@ -1000,8 +999,8 @@ local kinetic energy.
@@ -1011,8 +1010,8 @@ Find the theoretical value of \(a\) for which \(\Psi\) is an eigenfunction of \(
@@ -1044,8 +1043,8 @@ choose a grid which does not contain the origin.
@@ -1128,8 +1127,8 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
Python @@ -1204,8 +1203,8 @@ plt.savefig("plot_py.png")
If the space is discretized in small volume elements \(\mathbf{r}_i\) @@ -1235,8 +1234,8 @@ The energy is biased because:
@@ -1305,8 +1304,8 @@ To compile the Fortran and run it:
Python @@ -1421,8 +1420,8 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002
The variance of the local energy is a functional of \(\Psi\) @@ -1449,8 +1448,8 @@ energy can be used as a measure of the quality of a wave function.
@@ -1461,8 +1460,8 @@ Prove that :
\(\bar{E} = \langle E \rangle\) is a constant, so \(\langle \bar{E} @@ -1481,8 +1480,8 @@ Prove that :
@@ -1556,8 +1555,8 @@ To compile and run:
Python @@ -1694,8 +1693,8 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814
Numerical integration with deterministic methods is very efficient @@ -1711,8 +1710,8 @@ interval.
To compute the statistical error, you need to perform \(M\) @@ -1752,8 +1751,8 @@ And the confidence interval is given by
@@ -1791,8 +1790,8 @@ input array.
Python @@ -1851,8 +1850,8 @@ input array.
We will now perform our first Monte Carlo calculation to compute the @@ -1913,8 +1912,8 @@ compute the statistical error.
@@ -2014,8 +2013,8 @@ well as the index of the current step.
Python @@ -2129,8 +2128,8 @@ E = -0.49518773675598715 +/- 5.2391494923686175E-004
We will now use the square of the wave function to sample random @@ -2263,14 +2262,14 @@ compromise for the current problem.
-NOTE: below, we use the symbol dt for dL for reasons which will -become clear later. +NOTE: below, we use the symbol dt to denote dL since we will use +the same variable later on to store a time step.
@@ -2377,8 +2376,8 @@ Can you observe a reduction in the statistical error?
Python @@ -2523,8 +2522,8 @@ A = 0.51695266666666673 +/- 4.0445505648997396E-004