1
0
mirror of https://github.com/TREX-CoE/qmc-lttc.git synced 2025-01-03 10:06:12 +01:00
This commit is contained in:
scemama 2021-01-25 22:54:27 +00:00
parent e6ca7dd0a5
commit 29c5ebf07c

View File

@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2021-01-21 Thu 22:25 -->
<!-- 2021-01-25 Mon 22:54 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Quantum Monte Carlo</title>
@ -257,113 +257,128 @@ for the JavaScript code in this tag.
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org6025355">1. Introduction</a></li>
<li><a href="#orgbac45cc">2. Numerical evaluation of the energy</a>
<li><a href="#orgf7a78e4">1. Introduction</a></li>
<li><a href="#org5696f8b">2. Numerical evaluation of the energy</a>
<ul>
<li><a href="#org6998313">2.1. Local energy</a>
<li><a href="#org05580cd">2.1. Local energy</a>
<ul>
<li><a href="#org31adcd5">2.1.1. Exercise 1</a></li>
<li><a href="#org455741d">2.1.2. Exercise 2</a>
<li><a href="#org23947c1">2.1.1. Exercise 1</a></li>
<li><a href="#orgd624a8b">2.1.2. Exercise 2</a>
<ul>
<li><a href="#org2c5fa9a">2.1.2.1. Python</a></li>
<li><a href="#orge4088c5">2.1.2.2. Python</a></li>
<li><a href="#org18dd188">2.1.2.3. Fortran</a></li>
<li><a href="#org916b08f">2.1.2.4. Fortran</a></li>
<li><a href="#org1661138">2.1.2.1. Python</a></li>
<li><a href="#org50c3aad">2.1.2.2. Python</a></li>
<li><a href="#org3f11dde">2.1.2.3. Fortran</a></li>
<li><a href="#org92d265e">2.1.2.4. Fortran</a></li>
</ul>
</li>
<li><a href="#org53a6cc4">2.1.3. Exercise 3</a>
<li><a href="#orgc68ea75">2.1.3. Exercise 3</a>
<ul>
<li><a href="#org009d703">2.1.3.1. Python</a></li>
<li><a href="#org02c9ae0">2.1.3.2. Python</a></li>
<li><a href="#org5b5b6dd">2.1.3.3. Fortran</a></li>
<li><a href="#org4a13e7b">2.1.3.4. Fortran</a></li>
<li><a href="#orgaa63204">2.1.3.1. Python</a></li>
<li><a href="#orge262e44">2.1.3.2. Python</a></li>
<li><a href="#org0ab4bfb">2.1.3.3. Fortran</a></li>
<li><a href="#org9a6c1fb">2.1.3.4. Fortran</a></li>
</ul>
</li>
<li><a href="#org361bfae">2.1.4. Exercise 4</a>
<li><a href="#org547c9c4">2.1.4. Exercise 4</a>
<ul>
<li><a href="#org4889a9c">2.1.4.1. Python</a></li>
<li><a href="#org87d50f7">2.1.4.2. Python</a></li>
<li><a href="#orgac8b741">2.1.4.3. Fortran</a></li>
<li><a href="#org6fd3e5b">2.1.4.4. Fortran</a></li>
<li><a href="#org74c97bf">2.1.4.1. Python</a></li>
<li><a href="#orgcc44043">2.1.4.2. Python</a></li>
<li><a href="#orgce2c2e5">2.1.4.3. Fortran</a></li>
<li><a href="#org941820f">2.1.4.4. Fortran</a></li>
</ul>
</li>
<li><a href="#org206f369">2.1.5. Exercise 5</a>
<li><a href="#orgbdaff18">2.1.5. Exercise 5</a>
<ul>
<li><a href="#org3af3fb3">2.1.5.1. Python</a></li>
<li><a href="#orgbb62259">2.1.5.2. Python</a></li>
<li><a href="#org50c762e">2.1.5.3. Fortran</a></li>
<li><a href="#orgd6bf191">2.1.5.4. Fortran</a></li>
<li><a href="#org159140e">2.1.5.1. Python</a></li>
<li><a href="#org1e4cde2">2.1.5.2. Python</a></li>
<li><a href="#org02d18b8">2.1.5.3. Fortran</a></li>
<li><a href="#org63ad259">2.1.5.4. Fortran</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#org1554b06">2.2. Plot of the local energy along the \(x\) axis</a>
<li><a href="#orgdd79233">2.2. Plot of the local energy along the \(x\) axis</a>
<ul>
<li><a href="#org3a070de">2.2.1. Exercise</a>
<li><a href="#orgd250551">2.2.1. Exercise</a>
<ul>
<li><a href="#org6b7dd9a">2.2.1.1. Python</a></li>
<li><a href="#org29f9cc7">2.2.1.2. Python</a></li>
<li><a href="#org384586c">2.2.1.3. Fortran</a></li>
<li><a href="#orgcbf1d0a">2.2.1.4. Fortran</a></li>
<li><a href="#orgb5fae5f">2.2.1.1. Python</a></li>
<li><a href="#orgb2f1970">2.2.1.2. Python</a></li>
<li><a href="#orga11ec40">2.2.1.3. Fortran</a></li>
<li><a href="#org6eafd17">2.2.1.4. Fortran</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#org14675c5">2.3. <span class="todo TODO">TODO</span> Numerical estimation of the energy</a>
<li><a href="#org554689a">2.3. Numerical estimation of the energy</a>
<ul>
<li><a href="#org78d5b86">2.3.1. Exercise</a></li>
</ul>
</li>
<li><a href="#org55ef334">2.4. <span class="todo TODO">TODO</span> Variance of the local energy</a>
<li><a href="#org6369add">2.3.1. Exercise</a>
<ul>
<li><a href="#orgaa6b6de">2.4.1. Exercise (optional)</a></li>
<li><a href="#orgaedf8c6">2.4.2. Exercise</a></li>
<li><a href="#orgf3840f2">2.3.1.1. Python</a></li>
<li><a href="#orgf5e3ecd">2.3.1.2. Python</a></li>
<li><a href="#org826f9f4">2.3.1.3. Fortran</a></li>
<li><a href="#org97c81ba">2.3.1.4. Fortran</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#orgf0dcb22">3. <span class="todo TODO">TODO</span> Variational Monte Carlo</a>
<li><a href="#org4eb04ef">2.4. Variance of the local energy</a>
<ul>
<li><a href="#org06145c7">3.1. <span class="todo TODO">TODO</span> Computation of the statistical error</a>
<li><a href="#org9443a40">2.4.1. Exercise (optional)</a></li>
<li><a href="#org5106671">2.4.2. Exercise</a>
<ul>
<li><a href="#orgeb56d99">3.1.1. Exercise</a></li>
<li><a href="#org5767c40">2.4.2.1. Python</a></li>
<li><a href="#org32c72a0">2.4.2.2. Python</a></li>
<li><a href="#org1b3f7f4">2.4.2.3. Fortran</a></li>
<li><a href="#org7f15713">2.4.2.4. Fortran</a></li>
</ul>
</li>
<li><a href="#orgaaa817a">3.2. <span class="todo TODO">TODO</span> Uniform sampling in the box</a>
</ul>
</li>
</ul>
</li>
<li><a href="#org6414cd7">3. <span class="todo TODO">TODO</span> Variational Monte Carlo</a>
<ul>
<li><a href="#orged433aa">3.2.1. Exercise</a></li>
</ul>
</li>
<li><a href="#org74daf7f">3.3. <span class="todo TODO">TODO</span> Metropolis sampling with \(\Psi^2\)</a>
<li><a href="#org76f4f47">3.1. <span class="todo TODO">TODO</span> Computation of the statistical error</a>
<ul>
<li><a href="#org4a15485">3.3.1. Exercise</a></li>
<li><a href="#orgc801982">3.1.1. Exercise</a></li>
</ul>
</li>
<li><a href="#orge1c83d1">3.4. <span class="todo TODO">TODO</span> Gaussian random number generator</a></li>
<li><a href="#org9b85061">3.5. <span class="todo TODO">TODO</span> Generalized Metropolis algorithm</a>
<li><a href="#org8b118ec">3.2. <span class="todo TODO">TODO</span> Uniform sampling in the box</a>
<ul>
<li><a href="#org865407b">3.5.1. Exercise 1</a></li>
<li><a href="#org26350e3">3.5.2. Exercise 2</a></li>
<li><a href="#org925cb8e">3.2.1. Exercise</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#org726c101">4. <span class="todo TODO">TODO</span> Diffusion Monte Carlo</a>
<li><a href="#org8c24125">3.3. <span class="todo TODO">TODO</span> Metropolis sampling with \(\Psi^2\)</a>
<ul>
<li><a href="#org91f9b86">4.1. <span class="todo TODO">TODO</span> Hydrogen atom</a>
<li><a href="#org99bc8b5">3.3.1. Exercise</a></li>
</ul>
</li>
<li><a href="#org85cb077">3.4. <span class="todo TODO">TODO</span> Gaussian random number generator</a></li>
<li><a href="#org3f7062f">3.5. <span class="todo TODO">TODO</span> Generalized Metropolis algorithm</a>
<ul>
<li><a href="#orgacbb363">4.1.1. Exercise</a></li>
<li><a href="#orgc5b23ac">3.5.1. Exercise 1</a></li>
<li><a href="#org876a231">3.5.2. Exercise 2</a></li>
</ul>
</li>
<li><a href="#org16ed9e8">4.2. <span class="todo TODO">TODO</span> Dihydrogen</a></li>
</ul>
</li>
<li><a href="#org86be009">4. <span class="todo TODO">TODO</span> Diffusion Monte Carlo</a>
<ul>
<li><a href="#orgbbfe631">4.1. <span class="todo TODO">TODO</span> Hydrogen atom</a>
<ul>
<li><a href="#org574137c">4.1.1. Exercise</a></li>
</ul>
</li>
<li><a href="#orgdb34f3d">4.2. <span class="todo TODO">TODO</span> Dihydrogen</a></li>
</ul>
</li>
<li><a href="#orgc3ba7b8">5. <span class="todo TODO">TODO</span> <code>[0/1]</code> Last things to do</a></li>
</ul>
</div>
</div>
<div id="outline-container-org6025355" class="outline-2">
<h2 id="org6025355"><span class="section-number-2">1</span> Introduction</h2>
<div id="outline-container-orgf7a78e4" class="outline-2">
<h2 id="orgf7a78e4"><span class="section-number-2">1</span> Introduction</h2>
<div class="outline-text-2" id="text-1">
<p>
We propose different exercises to understand quantum Monte Carlo (QMC)
@ -374,12 +389,12 @@ Then we introduce the variational Monte Carlo (VMC) method which
computes a statistical estimate of the expectation value of the energy
associated with a given wave function.
Finally, we introduce the diffusion Monte Carlo (DMC) method which
gives the exact energy of the \(H_2\) molecule.
gives the exact energy of the hydrogen atom and of the \(H_2\) molecule.
</p>
<p>
Code examples will be given in Python and Fortran. Whatever language
can be chosen.
Code examples will be given in Python and Fortran. You can use
whatever language you prefer to write the program.
</p>
<p>
@ -391,22 +406,15 @@ is defined everywhere, continuous and infinitely differentiable.
</p>
<p>
<b>Note</b>
All the quantities are expressed in <i>atomic units</i> (energies,
coordinates, etc).
</p>
<div class="important">
<p>
In Fortran, when you use a double precision constant, don't forget
to put <code>d0</code> as a suffix (for example <code>2.0d0</code>), or it will be
interpreted as a single precision value
</p>
</div>
</div>
</div>
<div id="outline-container-orgbac45cc" class="outline-2">
<h2 id="orgbac45cc"><span class="section-number-2">2</span> Numerical evaluation of the energy</h2>
<div id="outline-container-org5696f8b" class="outline-2">
<h2 id="org5696f8b"><span class="section-number-2">2</span> Numerical evaluation of the energy</h2>
<div class="outline-text-2" id="text-2">
<p>
In this section we consider the Hydrogen atom with the following
@ -479,8 +487,8 @@ E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle}
\end{eqnarray*}
</div>
<div id="outline-container-org6998313" class="outline-3">
<h3 id="org6998313"><span class="section-number-3">2.1</span> Local energy</h3>
<div id="outline-container-org05580cd" class="outline-3">
<h3 id="org05580cd"><span class="section-number-3">2.1</span> Local energy</h3>
<div class="outline-text-3" id="text-2-1">
<p>
Write all the functions of this section in a single file :
@ -489,8 +497,8 @@ Fortran.
</p>
</div>
<div id="outline-container-org31adcd5" class="outline-4">
<h4 id="org31adcd5"><span class="section-number-4">2.1.1</span> Exercise 1</h4>
<div id="outline-container-org23947c1" class="outline-4">
<h4 id="org23947c1"><span class="section-number-4">2.1.1</span> Exercise 1</h4>
<div class="outline-text-4" id="text-2-1-1">
<div class="exercise">
<p>
@ -501,8 +509,8 @@ Find the theoretical value of \(a\) for which \(\Psi\) is an eigenfunction of \(
</div>
</div>
<div id="outline-container-org455741d" class="outline-4">
<h4 id="org455741d"><span class="section-number-4">2.1.2</span> Exercise 2</h4>
<div id="outline-container-orgd624a8b" class="outline-4">
<h4 id="orgd624a8b"><span class="section-number-4">2.1.2</span> Exercise 2</h4>
<div class="outline-text-4" id="text-2-1-2">
<div class="exercise">
<p>
@ -521,8 +529,8 @@ and returns the potential.
</p>
</div>
<div id="outline-container-org2c5fa9a" class="outline-5">
<h5 id="org2c5fa9a"><span class="section-number-5">2.1.2.1</span> Python</h5>
<div id="outline-container-org1661138" class="outline-5">
<h5 id="org1661138"><span class="section-number-5">2.1.2.1</span> Python</h5>
<div class="outline-text-5" id="text-2-1-2-1">
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
@ -534,8 +542,8 @@ and returns the potential.
</div>
</div>
<div id="outline-container-orge4088c5" class="outline-5">
<h5 id="orge4088c5"><span class="section-number-5">2.1.2.2</span> Python&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org50c3aad" class="outline-5">
<h5 id="org50c3aad"><span class="section-number-5">2.1.2.2</span> Python&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-2-2">
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
@ -547,8 +555,8 @@ and returns the potential.
</div>
</div>
<div id="outline-container-org18dd188" class="outline-5">
<h5 id="org18dd188"><span class="section-number-5">2.1.2.3</span> Fortran</h5>
<div id="outline-container-org3f11dde" class="outline-5">
<h5 id="org3f11dde"><span class="section-number-5">2.1.2.3</span> Fortran</h5>
<div class="outline-text-5" id="text-2-1-2-3">
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #228b22;">double precision </span><span style="color: #a020f0;">function</span><span style="color: #a0522d;"> </span><span style="color: #0000ff;">potential</span><span style="color: #000000; background-color: #ffffff;">(r)</span>
@ -561,8 +569,8 @@ and returns the potential.
</div>
</div>
<div id="outline-container-org916b08f" class="outline-5">
<h5 id="org916b08f"><span class="section-number-5">2.1.2.4</span> Fortran&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org92d265e" class="outline-5">
<h5 id="org92d265e"><span class="section-number-5">2.1.2.4</span> Fortran&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-2-4">
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #228b22;">double precision </span><span style="color: #a020f0;">function</span><span style="color: #a0522d;"> </span><span style="color: #0000ff;">potential</span><span style="color: #000000; background-color: #ffffff;">(r)</span>
@ -576,8 +584,8 @@ and returns the potential.
</div>
</div>
<div id="outline-container-org53a6cc4" class="outline-4">
<h4 id="org53a6cc4"><span class="section-number-4">2.1.3</span> Exercise 3</h4>
<div id="outline-container-orgc68ea75" class="outline-4">
<h4 id="orgc68ea75"><span class="section-number-4">2.1.3</span> Exercise 3</h4>
<div class="outline-text-4" id="text-2-1-3">
<div class="exercise">
<p>
@ -590,8 +598,8 @@ input arguments, and returns a scalar.
</div>
<div id="outline-container-org009d703" class="outline-5">
<h5 id="org009d703"><span class="section-number-5">2.1.3.1</span> Python</h5>
<div id="outline-container-orgaa63204" class="outline-5">
<h5 id="orgaa63204"><span class="section-number-5">2.1.3.1</span> Python</h5>
<div class="outline-text-5" id="text-2-1-3-1">
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">def</span> <span style="color: #0000ff;">psi</span>(a, r):
@ -601,8 +609,8 @@ input arguments, and returns a scalar.
</div>
</div>
<div id="outline-container-org02c9ae0" class="outline-5">
<h5 id="org02c9ae0"><span class="section-number-5">2.1.3.2</span> Python&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-orge262e44" class="outline-5">
<h5 id="orge262e44"><span class="section-number-5">2.1.3.2</span> Python&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-3-2">
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">def</span> <span style="color: #0000ff;">psi</span>(a, r):
@ -612,8 +620,8 @@ input arguments, and returns a scalar.
</div>
</div>
<div id="outline-container-org5b5b6dd" class="outline-5">
<h5 id="org5b5b6dd"><span class="section-number-5">2.1.3.3</span> Fortran</h5>
<div id="outline-container-org0ab4bfb" class="outline-5">
<h5 id="org0ab4bfb"><span class="section-number-5">2.1.3.3</span> Fortran</h5>
<div class="outline-text-5" id="text-2-1-3-3">
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #228b22;">double precision </span><span style="color: #a020f0;">function</span><span style="color: #a0522d;"> </span><span style="color: #0000ff;">psi</span><span style="color: #000000; background-color: #ffffff;">(a, r)</span>
@ -626,8 +634,8 @@ input arguments, and returns a scalar.
</div>
</div>
<div id="outline-container-org4a13e7b" class="outline-5">
<h5 id="org4a13e7b"><span class="section-number-5">2.1.3.4</span> Fortran&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org9a6c1fb" class="outline-5">
<h5 id="org9a6c1fb"><span class="section-number-5">2.1.3.4</span> Fortran&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-3-4">
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #228b22;">double precision </span><span style="color: #a020f0;">function</span><span style="color: #a0522d;"> </span><span style="color: #0000ff;">psi</span><span style="color: #000000; background-color: #ffffff;">(a, r)</span>
@ -641,8 +649,8 @@ input arguments, and returns a scalar.
</div>
</div>
<div id="outline-container-org361bfae" class="outline-4">
<h4 id="org361bfae"><span class="section-number-4">2.1.4</span> Exercise 4</h4>
<div id="outline-container-org547c9c4" class="outline-4">
<h4 id="org547c9c4"><span class="section-number-4">2.1.4</span> Exercise 4</h4>
<div class="outline-text-4" id="text-2-1-4">
<div class="exercise">
<p>
@ -700,8 +708,8 @@ So the local kinetic energy is
</p>
</div>
<div id="outline-container-org4889a9c" class="outline-5">
<h5 id="org4889a9c"><span class="section-number-5">2.1.4.1</span> Python</h5>
<div id="outline-container-org74c97bf" class="outline-5">
<h5 id="org74c97bf"><span class="section-number-5">2.1.4.1</span> Python</h5>
<div class="outline-text-5" id="text-2-1-4-1">
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">def</span> <span style="color: #0000ff;">kinetic</span>(a,r):
@ -711,8 +719,8 @@ So the local kinetic energy is
</div>
</div>
<div id="outline-container-org87d50f7" class="outline-5">
<h5 id="org87d50f7"><span class="section-number-5">2.1.4.2</span> Python&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-orgcc44043" class="outline-5">
<h5 id="orgcc44043"><span class="section-number-5">2.1.4.2</span> Python&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-4-2">
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">def</span> <span style="color: #0000ff;">kinetic</span>(a,r):
@ -722,8 +730,8 @@ So the local kinetic energy is
</div>
</div>
<div id="outline-container-orgac8b741" class="outline-5">
<h5 id="orgac8b741"><span class="section-number-5">2.1.4.3</span> Fortran</h5>
<div id="outline-container-orgce2c2e5" class="outline-5">
<h5 id="orgce2c2e5"><span class="section-number-5">2.1.4.3</span> Fortran</h5>
<div class="outline-text-5" id="text-2-1-4-3">
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #228b22;">double precision </span><span style="color: #a020f0;">function</span><span style="color: #a0522d;"> </span><span style="color: #0000ff;">kinetic</span><span style="color: #000000; background-color: #ffffff;">(a,r)</span>
@ -736,8 +744,8 @@ So the local kinetic energy is
</div>
</div>
<div id="outline-container-org6fd3e5b" class="outline-5">
<h5 id="org6fd3e5b"><span class="section-number-5">2.1.4.4</span> Fortran&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org941820f" class="outline-5">
<h5 id="org941820f"><span class="section-number-5">2.1.4.4</span> Fortran&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-4-4">
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #228b22;">double precision </span><span style="color: #a020f0;">function</span><span style="color: #a0522d;"> </span><span style="color: #0000ff;">kinetic</span><span style="color: #000000; background-color: #ffffff;">(a,r)</span>
@ -752,8 +760,8 @@ So the local kinetic energy is
</div>
</div>
<div id="outline-container-org206f369" class="outline-4">
<h4 id="org206f369"><span class="section-number-4">2.1.5</span> Exercise 5</h4>
<div id="outline-container-orgbdaff18" class="outline-4">
<h4 id="orgbdaff18"><span class="section-number-4">2.1.5</span> Exercise 5</h4>
<div class="outline-text-4" id="text-2-1-5">
<div class="exercise">
<p>
@ -773,8 +781,8 @@ local kinetic energy.
</div>
<div id="outline-container-org3af3fb3" class="outline-5">
<h5 id="org3af3fb3"><span class="section-number-5">2.1.5.1</span> Python</h5>
<div id="outline-container-org159140e" class="outline-5">
<h5 id="org159140e"><span class="section-number-5">2.1.5.1</span> Python</h5>
<div class="outline-text-5" id="text-2-1-5-1">
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">def</span> <span style="color: #0000ff;">e_loc</span>(a,r):
@ -784,8 +792,8 @@ local kinetic energy.
</div>
</div>
<div id="outline-container-orgbb62259" class="outline-5">
<h5 id="orgbb62259"><span class="section-number-5">2.1.5.2</span> Python&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org1e4cde2" class="outline-5">
<h5 id="org1e4cde2"><span class="section-number-5">2.1.5.2</span> Python&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-5-2">
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">def</span> <span style="color: #0000ff;">e_loc</span>(a,r):
@ -795,8 +803,8 @@ local kinetic energy.
</div>
</div>
<div id="outline-container-org50c762e" class="outline-5">
<h5 id="org50c762e"><span class="section-number-5">2.1.5.3</span> Fortran</h5>
<div id="outline-container-org02d18b8" class="outline-5">
<h5 id="org02d18b8"><span class="section-number-5">2.1.5.3</span> Fortran</h5>
<div class="outline-text-5" id="text-2-1-5-3">
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #228b22;">double precision </span><span style="color: #a020f0;">function</span><span style="color: #a0522d;"> </span><span style="color: #0000ff;">e_loc</span><span style="color: #000000; background-color: #ffffff;">(a,r)</span>
@ -809,8 +817,8 @@ local kinetic energy.
</div>
</div>
<div id="outline-container-orgd6bf191" class="outline-5">
<h5 id="orgd6bf191"><span class="section-number-5">2.1.5.4</span> Fortran&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org63ad259" class="outline-5">
<h5 id="org63ad259"><span class="section-number-5">2.1.5.4</span> Fortran&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-1-5-4">
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #228b22;">double precision </span><span style="color: #a020f0;">function</span><span style="color: #a0522d;"> </span><span style="color: #0000ff;">e_loc</span><span style="color: #000000; background-color: #ffffff;">(a,r)</span>
@ -826,13 +834,13 @@ local kinetic energy.
</div>
</div>
<div id="outline-container-org1554b06" class="outline-3">
<h3 id="org1554b06"><span class="section-number-3">2.2</span> Plot of the local energy along the \(x\) axis</h3>
<div id="outline-container-orgdd79233" class="outline-3">
<h3 id="orgdd79233"><span class="section-number-3">2.2</span> Plot of the local energy along the \(x\) axis</h3>
<div class="outline-text-3" id="text-2-2">
</div>
<div id="outline-container-org3a070de" class="outline-4">
<h4 id="org3a070de"><span class="section-number-4">2.2.1</span> Exercise</h4>
<div id="outline-container-orgd250551" class="outline-4">
<h4 id="orgd250551"><span class="section-number-4">2.2.1</span> Exercise</h4>
<div class="outline-text-4" id="text-2-2-1">
<div class="exercise">
<p>
@ -846,8 +854,8 @@ Gnuplot to plot the files.
</div>
</div>
<div id="outline-container-org6b7dd9a" class="outline-5">
<h5 id="org6b7dd9a"><span class="section-number-5">2.2.1.1</span> Python</h5>
<div id="outline-container-orgb5fae5f" class="outline-5">
<h5 id="orgb5fae5f"><span class="section-number-5">2.2.1.1</span> Python</h5>
<div class="outline-text-5" id="text-2-2-1-1">
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
@ -868,8 +876,8 @@ plt.savefig(<span style="color: #8b2252;">"plot_py.png"</span>)
</div>
</div>
<div id="outline-container-org29f9cc7" class="outline-5">
<h5 id="org29f9cc7"><span class="section-number-5">2.2.1.2</span> Python&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-orgb2f1970" class="outline-5">
<h5 id="orgb2f1970"><span class="section-number-5">2.2.1.2</span> Python&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-2-1-2">
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
@ -898,8 +906,8 @@ plt.savefig(<span style="color: #8b2252;">"plot_py.png"</span>)
</div>
</div>
<div id="outline-container-org384586c" class="outline-5">
<h5 id="org384586c"><span class="section-number-5">2.2.1.3</span> Fortran</h5>
<div id="outline-container-orga11ec40" class="outline-5">
<h5 id="orga11ec40"><span class="section-number-5">2.2.1.3</span> Fortran</h5>
<div class="outline-text-5" id="text-2-2-1-3">
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #a020f0;">program</span> <span style="color: #0000ff;">plot</span>
@ -931,7 +939,7 @@ To compile and run:
</div>
<p>
To plot the data using gnuplot:
To plot the data using Gnuplot:
</p>
<div class="org-src-container">
@ -949,8 +957,8 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
</div>
</div>
<div id="outline-container-orgcbf1d0a" class="outline-5">
<h5 id="orgcbf1d0a"><span class="section-number-5">2.2.1.4</span> Fortran&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div id="outline-container-org6eafd17" class="outline-5">
<h5 id="org6eafd17"><span class="section-number-5">2.2.1.4</span> Fortran&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-2-1-4">
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #a020f0;">program</span> <span style="color: #0000ff;">plot</span>
@ -995,7 +1003,7 @@ To compile and run:
</div>
<p>
To plot the data using gnuplot:
To plot the data using Gnuplot:
</p>
<div class="org-src-container">
@ -1021,8 +1029,8 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \
</div>
</div>
<div id="outline-container-org14675c5" class="outline-3">
<h3 id="org14675c5"><span class="section-number-3">2.3</span> <span class="todo TODO">TODO</span> Numerical estimation of the energy</h3>
<div id="outline-container-org554689a" class="outline-3">
<h3 id="org554689a"><span class="section-number-3">2.3</span> Numerical estimation of the energy</h3>
<div class="outline-text-3" id="text-2-3">
<p>
If the space is discretized in small volume elements \(\mathbf{r}_i\)
@ -1052,8 +1060,8 @@ The energy is biased because:
</div>
<div id="outline-container-org78d5b86" class="outline-4">
<h4 id="org78d5b86"><span class="section-number-4">2.3.1</span> Exercise</h4>
<div id="outline-container-org6369add" class="outline-4">
<h4 id="org6369add"><span class="section-number-4">2.3.1</span> Exercise</h4>
<div class="outline-text-4" id="text-2-3-1">
<div class="exercise">
<p>
@ -1062,11 +1070,33 @@ Compute a numerical estimate of the energy in a grid of
\mathbf{r} \le (5,5,5)\).
</p>
</div>
</div>
<p>
<b>Python</b>
</p>
<div id="outline-container-orgf3840f2" class="outline-5">
<h5 id="orgf3840f2"><span class="section-number-5">2.3.1.1</span> Python</h5>
<div class="outline-text-5" id="text-2-3-1-1">
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc, psi
<span style="color: #a0522d;">interval</span> = np.linspace(-5,5,num=50)
<span style="color: #a0522d;">delta</span> = (interval[1]-interval[0])**3
<span style="color: #a0522d;">r</span> = np.array([0.,0.,0.])
<span style="color: #a020f0;">for</span> a <span style="color: #a020f0;">in</span> [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
# <span style="color: #b22222;">TODO</span>
<span style="color: #a020f0;">print</span>(f<span style="color: #8b2252;">"a = {a} \t E = {E}"</span>)
</pre>
</div>
</div>
</div>
<div id="outline-container-orgf5e3ecd" class="outline-5">
<h5 id="orgf5e3ecd"><span class="section-number-5">2.3.1.2</span> Python&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-3-1-2">
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc, psi
@ -1079,25 +1109,65 @@ Compute a numerical estimate of the energy in a grid of
<span style="color: #a020f0;">for</span> a <span style="color: #a020f0;">in</span> [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
<span style="color: #a0522d;">E</span> = 0.
<span style="color: #a0522d;">norm</span> = 0.
<span style="color: #a020f0;">for</span> x <span style="color: #a020f0;">in</span> interval:
<span style="color: #a0522d;">r</span>[0] = x
<span style="color: #a020f0;">for</span> y <span style="color: #a020f0;">in</span> interval:
<span style="color: #a0522d;">r</span>[1] = y
<span style="color: #a020f0;">for</span> z <span style="color: #a020f0;">in</span> interval:
<span style="color: #a0522d;">r</span>[2] = z
<span style="color: #a0522d;">w</span> = psi(a,r)
<span style="color: #a0522d;">w</span> = w * w * delta
<span style="color: #a0522d;">E</span> += w * e_loc(a,r)
<span style="color: #a0522d;">norm</span> += w
<span style="color: #a020f0;">for</span> x <span style="color: #a020f0;">in</span> interval:
<span style="color: #a0522d;">r</span>[0] = x
<span style="color: #a020f0;">for</span> y <span style="color: #a020f0;">in</span> interval:
<span style="color: #a0522d;">r</span>[1] = y
<span style="color: #a020f0;">for</span> z <span style="color: #a020f0;">in</span> interval:
<span style="color: #a0522d;">r</span>[2] = z
<span style="color: #a0522d;">w</span> = psi(a,r)
<span style="color: #a0522d;">w</span> = w * w * delta
<span style="color: #a0522d;">E</span> += w * e_loc(a,r)
<span style="color: #a0522d;">norm</span> += w
<span style="color: #a0522d;">E</span> = E / norm
<span style="color: #a020f0;">print</span>(f<span style="color: #8b2252;">"a = {a} \t E = {E}"</span>)
</pre>
</div>
</div>
</div>
<div id="outline-container-org826f9f4" class="outline-5">
<h5 id="org826f9f4"><span class="section-number-5">2.3.1.3</span> Fortran</h5>
<div class="outline-text-5" id="text-2-3-1-3">
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #a020f0;">program</span> <span style="color: #0000ff;">energy_hydrogen</span>
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
<span style="color: #228b22;">double precision</span>, <span style="color: #a020f0;">external</span> ::<span style="color: #a0522d;"> e_loc, psi</span>
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> x(50), w, delta, energy, dx, r(3), a(6), norm</span>
<span style="color: #228b22;">integer</span> ::<span style="color: #a0522d;"> i, k, l, j</span>
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
dx = 10.d0/(<span style="color: #a020f0;">size</span>(x)-1)
<span style="color: #a020f0;">do</span> i=1,<span style="color: #a020f0;">size</span>(x)
x(i) = -5.d0 + (i-1)*dx
<span style="color: #a020f0;">end do</span>
<span style="color: #a020f0;">do</span> j=1,<span style="color: #a020f0;">size</span>(a)
! <span style="color: #b22222;">TODO</span>
<span style="color: #a020f0;">print</span> *, <span style="color: #8b2252;">'a = '</span>, a(j), <span style="color: #8b2252;">' E = '</span>, energy
<span style="color: #a020f0;">end do</span>
<span style="color: #a020f0;">end program</span> <span style="color: #0000ff;">energy_hydrogen</span>
</pre>
</div>
<p>
<b>Fortran</b>
To compile the Fortran and run it:
</p>
<div class="org-src-container">
<pre class="src src-sh">gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
./energy_hydrogen
</pre>
</div>
</div>
</div>
<div id="outline-container-org97c81ba" class="outline-5">
<h5 id="org97c81ba"><span class="section-number-5">2.3.1.4</span> Fortran&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-3-1-4">
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #a020f0;">program</span> <span style="color: #0000ff;">energy_hydrogen</span>
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
@ -1162,14 +1232,15 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002
</div>
</div>
</div>
</div>
<div id="outline-container-org55ef334" class="outline-3">
<h3 id="org55ef334"><span class="section-number-3">2.4</span> <span class="todo TODO">TODO</span> Variance of the local energy</h3>
<div id="outline-container-org4eb04ef" class="outline-3">
<h3 id="org4eb04ef"><span class="section-number-3">2.4</span> Variance of the local energy</h3>
<div class="outline-text-3" id="text-2-4">
<p>
The variance of the local energy is a functional of \(\Psi\)
which measures the magnitude of the fluctuations of the local
energy associated with \(\Psi\) around the average:
energy associated with \(\Psi\) around its average:
</p>
<p>
@ -1181,7 +1252,7 @@ which can be simplified as
</p>
<p>
\[ \sigma^2(E_L) = \langle E_L^2 \rangle - \langle E_L \rangle^2 \]
\[ \sigma^2(E_L) = \langle E_L^2 \rangle_{\Psi^2} - \langle E_L \rangle_{\Psi^2}^2.\]
</p>
<p>
@ -1191,21 +1262,21 @@ energy can be used as a measure of the quality of a wave function.
</p>
</div>
<div id="outline-container-orgaa6b6de" class="outline-4">
<h4 id="orgaa6b6de"><span class="section-number-4">2.4.1</span> Exercise (optional)</h4>
<div id="outline-container-org9443a40" class="outline-4">
<h4 id="org9443a40"><span class="section-number-4">2.4.1</span> Exercise (optional)</h4>
<div class="outline-text-4" id="text-2-4-1">
<div class="exercise">
<p>
Prove that :
\[\langle E - \langle E \rangle \rangle^2 = \langle E^2 \rangle - \langle E \rangle^2 \]
\[\left( \langle E - \langle E \rangle_{\Psi^2} \rangle_{\Psi^2} \right)^2 = \langle E^2 \rangle_{\Psi^2} - \langle E \rangle_{\Psi^2}^2 \]
</p>
</div>
</div>
</div>
<div id="outline-container-orgaedf8c6" class="outline-4">
<h4 id="orgaedf8c6"><span class="section-number-4">2.4.2</span> Exercise</h4>
<div id="outline-container-org5106671" class="outline-4">
<h4 id="org5106671"><span class="section-number-4">2.4.2</span> Exercise</h4>
<div class="outline-text-4" id="text-2-4-2">
<div class="exercise">
<p>
@ -1216,11 +1287,32 @@ in a grid of \(50\times50\times50\) points in the range
\le \mathbf{r} \le (5,5,5)\) for different values of \(a\).
</p>
</div>
</div>
<p>
<b>Python</b>
</p>
<div id="outline-container-org5767c40" class="outline-5">
<h5 id="org5767c40"><span class="section-number-5">2.4.2.1</span> Python</h5>
<div class="outline-text-5" id="text-2-4-2-1">
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc, psi
<span style="color: #a0522d;">interval</span> = np.linspace(-5,5,num=50)
<span style="color: #a0522d;">delta</span> = (interval[1]-interval[0])**3
<span style="color: #a0522d;">r</span> = np.array([0.,0.,0.])
<span style="color: #a020f0;">for</span> a <span style="color: #a020f0;">in</span> [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
# <span style="color: #b22222;">TODO</span>
<span style="color: #a020f0;">print</span>(f<span style="color: #8b2252;">"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}"</span>)
</pre>
</div>
</div>
</div>
<div id="outline-container-org32c72a0" class="outline-5">
<h5 id="org32c72a0"><span class="section-number-5">2.4.2.2</span> Python&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-4-2-2">
<div class="org-src-container">
<pre class="src src-python"><span style="color: #a020f0;">import</span> numpy <span style="color: #a020f0;">as</span> np
<span style="color: #a020f0;">from</span> hydrogen <span style="color: #a020f0;">import</span> e_loc, psi
@ -1252,10 +1344,55 @@ in a grid of \(50\times50\times50\) points in the range
<span style="color: #a020f0;">print</span>(f<span style="color: #8b2252;">"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}"</span>)
</pre>
</div>
</div>
</div>
<div id="outline-container-org1b3f7f4" class="outline-5">
<h5 id="org1b3f7f4"><span class="section-number-5">2.4.2.3</span> Fortran</h5>
<div class="outline-text-5" id="text-2-4-2-3">
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #a020f0;">program</span> <span style="color: #0000ff;">variance_hydrogen</span>
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
<span style="color: #228b22;">double precision</span>, <span style="color: #a020f0;">external</span> ::<span style="color: #a0522d;"> e_loc, psi</span>
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> x(50), w, delta, energy, dx, r(3), a(6), norm, s2</span>
<span style="color: #228b22;">double precision</span> ::<span style="color: #a0522d;"> e, energy2</span>
<span style="color: #228b22;">integer</span> ::<span style="color: #a0522d;"> i, k, l, j</span>
a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /)
dx = 10.d0/(<span style="color: #a020f0;">size</span>(x)-1)
<span style="color: #a020f0;">do</span> i=1,<span style="color: #a020f0;">size</span>(x)
x(i) = -5.d0 + (i-1)*dx
<span style="color: #a020f0;">end do</span>
delta = dx**3
r(:) = 0.d0
<span style="color: #a020f0;">do</span> j=1,<span style="color: #a020f0;">size</span>(a)
! <span style="color: #b22222;">TODO</span>
<span style="color: #a020f0;">print</span> *, <span style="color: #8b2252;">'a = '</span>, a(j), <span style="color: #8b2252;">' E = '</span>, energy, <span style="color: #8b2252;">' s2 = '</span>, s2
<span style="color: #a020f0;">end do</span>
<span style="color: #a020f0;">end program</span> <span style="color: #0000ff;">variance_hydrogen</span>
</pre>
</div>
<p>
<b>Fortran</b>
To compile and run:
</p>
<div class="org-src-container">
<pre class="src src-sh">gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen
./variance_hydrogen
</pre>
</div>
</div>
</div>
<div id="outline-container-org7f15713" class="outline-5">
<h5 id="org7f15713"><span class="section-number-5">2.4.2.4</span> Fortran&#xa0;&#xa0;&#xa0;<span class="tag"><span class="solution">solution</span></span></h5>
<div class="outline-text-5" id="text-2-4-2-4">
<div class="org-src-container">
<pre class="src src-f90"><span style="color: #a020f0;">program</span> <span style="color: #0000ff;">variance_hydrogen</span>
<span style="color: #a020f0;">implicit</span> <span style="color: #228b22;">none</span>
@ -1327,10 +1464,11 @@ a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.806881
</div>
</div>
</div>
</div>
<div id="outline-container-orgf0dcb22" class="outline-2">
<h2 id="orgf0dcb22"><span class="section-number-2">3</span> <span class="todo TODO">TODO</span> Variational Monte Carlo</h2>
<div id="outline-container-org6414cd7" class="outline-2">
<h2 id="org6414cd7"><span class="section-number-2">3</span> <span class="todo TODO">TODO</span> Variational Monte Carlo</h2>
<div class="outline-text-2" id="text-3">
<p>
Numerical integration with deterministic methods is very efficient
@ -1346,8 +1484,8 @@ interval.
</p>
</div>
<div id="outline-container-org06145c7" class="outline-3">
<h3 id="org06145c7"><span class="section-number-3">3.1</span> <span class="todo TODO">TODO</span> Computation of the statistical error</h3>
<div id="outline-container-org76f4f47" class="outline-3">
<h3 id="org76f4f47"><span class="section-number-3">3.1</span> <span class="todo TODO">TODO</span> Computation of the statistical error</h3>
<div class="outline-text-3" id="text-3-1">
<p>
To compute the statistical error, you need to perform \(M\)
@ -1387,8 +1525,8 @@ And the confidence interval is given by
</p>
</div>
<div id="outline-container-orgeb56d99" class="outline-4">
<h4 id="orgeb56d99"><span class="section-number-4">3.1.1</span> Exercise</h4>
<div id="outline-container-orgc801982" class="outline-4">
<h4 id="orgc801982"><span class="section-number-4">3.1.1</span> Exercise</h4>
<div class="outline-text-4" id="text-3-1-1">
<div class="exercise">
<p>
@ -1437,8 +1575,8 @@ input array.
</div>
</div>
<div id="outline-container-orgaaa817a" class="outline-3">
<h3 id="orgaaa817a"><span class="section-number-3">3.2</span> <span class="todo TODO">TODO</span> Uniform sampling in the box</h3>
<div id="outline-container-org8b118ec" class="outline-3">
<h3 id="org8b118ec"><span class="section-number-3">3.2</span> <span class="todo TODO">TODO</span> Uniform sampling in the box</h3>
<div class="outline-text-3" id="text-3-2">
<p>
We will now do our first Monte Carlo calculation to compute the
@ -1472,8 +1610,8 @@ statistical error.
</p>
</div>
<div id="outline-container-orged433aa" class="outline-4">
<h4 id="orged433aa"><span class="section-number-4">3.2.1</span> Exercise</h4>
<div id="outline-container-org925cb8e" class="outline-4">
<h4 id="org925cb8e"><span class="section-number-4">3.2.1</span> Exercise</h4>
<div class="outline-text-4" id="text-3-2-1">
<div class="exercise">
<p>
@ -1583,8 +1721,8 @@ E = -0.49588321986667677 +/- 7.1758863546737969E-004
</div>
</div>
<div id="outline-container-org74daf7f" class="outline-3">
<h3 id="org74daf7f"><span class="section-number-3">3.3</span> <span class="todo TODO">TODO</span> Metropolis sampling with \(\Psi^2\)</h3>
<div id="outline-container-org8c24125" class="outline-3">
<h3 id="org8c24125"><span class="section-number-3">3.3</span> <span class="todo TODO">TODO</span> Metropolis sampling with \(\Psi^2\)</h3>
<div class="outline-text-3" id="text-3-3">
<p>
We will now use the square of the wave function to sample random
@ -1671,8 +1809,8 @@ step such that the acceptance rate is close to 0.5 is a good compromise.
</div>
<div id="outline-container-org4a15485" class="outline-4">
<h4 id="org4a15485"><span class="section-number-4">3.3.1</span> Exercise</h4>
<div id="outline-container-org99bc8b5" class="outline-4">
<h4 id="org99bc8b5"><span class="section-number-4">3.3.1</span> Exercise</h4>
<div class="outline-text-4" id="text-3-3-1">
<div class="exercise">
<p>
@ -1802,8 +1940,8 @@ A = 0.51737800000000000 +/- 4.1827406733181444E-004
</div>
</div>
<div id="outline-container-orge1c83d1" class="outline-3">
<h3 id="orge1c83d1"><span class="section-number-3">3.4</span> <span class="todo TODO">TODO</span> Gaussian random number generator</h3>
<div id="outline-container-org85cb077" class="outline-3">
<h3 id="org85cb077"><span class="section-number-3">3.4</span> <span class="todo TODO">TODO</span> Gaussian random number generator</h3>
<div class="outline-text-3" id="text-3-4">
<p>
To obtain Gaussian-distributed random numbers, you can apply the
@ -1857,8 +1995,8 @@ following sections.
</div>
</div>
<div id="outline-container-org9b85061" class="outline-3">
<h3 id="org9b85061"><span class="section-number-3">3.5</span> <span class="todo TODO">TODO</span> Generalized Metropolis algorithm</h3>
<div id="outline-container-org3f7062f" class="outline-3">
<h3 id="org3f7062f"><span class="section-number-3">3.5</span> <span class="todo TODO">TODO</span> Generalized Metropolis algorithm</h3>
<div class="outline-text-3" id="text-3-5">
<p>
One can use more efficient numerical schemes to move the electrons.
@ -1957,8 +2095,8 @@ The transition probability becomes:
</div>
<div id="outline-container-org865407b" class="outline-4">
<h4 id="org865407b"><span class="section-number-4">3.5.1</span> Exercise 1</h4>
<div id="outline-container-orgc5b23ac" class="outline-4">
<h4 id="orgc5b23ac"><span class="section-number-4">3.5.1</span> Exercise 1</h4>
<div class="outline-text-4" id="text-3-5-1">
<div class="exercise">
<p>
@ -1994,8 +2132,8 @@ Write a function to compute the drift vector \(\frac{\nabla \Psi(\mathbf{r})}{\P
</div>
</div>
<div id="outline-container-org26350e3" class="outline-4">
<h4 id="org26350e3"><span class="section-number-4">3.5.2</span> Exercise 2</h4>
<div id="outline-container-org876a231" class="outline-4">
<h4 id="org876a231"><span class="section-number-4">3.5.2</span> Exercise 2</h4>
<div class="outline-text-4" id="text-3-5-2">
<div class="exercise">
<p>
@ -2147,17 +2285,17 @@ A = 0.78861366666666655 +/- 3.5096729498002445E-004
</div>
</div>
<div id="outline-container-org726c101" class="outline-2">
<h2 id="org726c101"><span class="section-number-2">4</span> <span class="todo TODO">TODO</span> Diffusion Monte Carlo</h2>
<div id="outline-container-org86be009" class="outline-2">
<h2 id="org86be009"><span class="section-number-2">4</span> <span class="todo TODO">TODO</span> Diffusion Monte Carlo</h2>
<div class="outline-text-2" id="text-4">
</div>
<div id="outline-container-org91f9b86" class="outline-3">
<h3 id="org91f9b86"><span class="section-number-3">4.1</span> <span class="todo TODO">TODO</span> Hydrogen atom</h3>
<div id="outline-container-orgbbfe631" class="outline-3">
<h3 id="orgbbfe631"><span class="section-number-3">4.1</span> <span class="todo TODO">TODO</span> Hydrogen atom</h3>
<div class="outline-text-3" id="text-4-1">
</div>
<div id="outline-container-orgacbb363" class="outline-4">
<h4 id="orgacbb363"><span class="section-number-4">4.1.1</span> Exercise</h4>
<div id="outline-container-org574137c" class="outline-4">
<h4 id="org574137c"><span class="section-number-4">4.1.1</span> Exercise</h4>
<div class="outline-text-4" id="text-4-1-1">
<div class="exercise">
<p>
@ -2315,8 +2453,8 @@ A = 0.78861366666666655 +/- 3.5096729498002445E-004
</div>
<div id="outline-container-org16ed9e8" class="outline-3">
<h3 id="org16ed9e8"><span class="section-number-3">4.2</span> <span class="todo TODO">TODO</span> Dihydrogen</h3>
<div id="outline-container-orgdb34f3d" class="outline-3">
<h3 id="orgdb34f3d"><span class="section-number-3">4.2</span> <span class="todo TODO">TODO</span> Dihydrogen</h3>
<div class="outline-text-3" id="text-4-2">
<p>
We will now consider the H<sub>2</sub> molecule in a minimal basis composed of the
@ -2335,10 +2473,25 @@ the nuclei.
</div>
</div>
</div>
<div id="outline-container-orgc3ba7b8" class="outline-2">
<h2 id="orgc3ba7b8"><span class="section-number-2">5</span> <span class="todo TODO">TODO</span> <code>[0/1]</code> Last things to do</h2>
<div class="outline-text-2" id="text-5">
<ul class="org-ul">
<li class="off"><code>[&#xa0;]</code> Prepare 4 questions for the exam: multiple-choice questions
with 4 possible answers. Questions should be independent because
they will be asked in a random order.</li>
<li class="off"><code>[&#xa0;]</code> Propose a project for the students to continue the
programs. Idea: Modify the program to compute the exact energy of
the H\(_2\) molecule at $R$=1.4010 bohr. Answer: 0.17406 a.u.</li>
</ul>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Anthony Scemama, Claudia Filippi</p>
<p class="date">Created: 2021-01-21 Thu 22:25</p>
<p class="date">Created: 2021-01-25 Mon 22:54</p>
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
</div>
</body>