mirror of
https://github.com/TREX-CoE/qmc-lttc.git
synced 2024-12-30 16:15:57 +01:00
Added Metropolis Markov chain
This commit is contained in:
parent
1c48ffdfed
commit
0b59bb190f
414
QMC.org
414
QMC.org
@ -469,7 +469,7 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
|
||||
$$
|
||||
which can be simplified as
|
||||
|
||||
$$ \sigma^2(E_L) = \langle E^2 \rangle - \langle E \rangle^2 $$
|
||||
$$ \sigma^2(E_L) = \langle E_L^2 \rangle - \langle E_L \rangle^2 $$
|
||||
|
||||
If the local energy is constant (i.e. $\Psi$ is an eigenfunction of
|
||||
$\hat{H}$) the variance is zero, so the variance of the local
|
||||
@ -804,88 +804,79 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
|
||||
#+RESULTS:
|
||||
: E = -0.49588321986667677 +/- 7.1758863546737969E-004
|
||||
|
||||
** Gaussian sampling
|
||||
** Metropolis sampling with $\Psi^2$
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle qmc_gaussian.py
|
||||
:header-args:f90: :tangle qmc_gaussian.f90
|
||||
:header-args:python: :tangle qmc_metropolis.py
|
||||
:header-args:f90: :tangle qmc_metropolis.f90
|
||||
:END:
|
||||
|
||||
We will now improve the sampling and allow to sample in the whole
|
||||
3D space, correcting the bias related to the sampling in the box.
|
||||
|
||||
Instead of drawing uniform random numbers, we will draw Gaussian
|
||||
random numbers centered on 0 and with a variance of 1.
|
||||
|
||||
To obtain Gaussian-distributed random numbers, you can apply the
|
||||
[[https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform][Box Muller transform]] to uniform random numbers:
|
||||
|
||||
\begin{eqnarray*}
|
||||
z_1 &=& \sqrt{-2 \ln u_1} \cos(2 \pi u_2) \\
|
||||
z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2)
|
||||
\end{eqnarray*}
|
||||
|
||||
Here is a Fortran implementation returning a Gaussian-distributed
|
||||
n-dimensional vector $\mathbf{z}$;
|
||||
|
||||
*Fortran*
|
||||
#+BEGIN_SRC f90 :tangle qmc_stats.f90
|
||||
subroutine random_gauss(z,n)
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
double precision, intent(out) :: z(n)
|
||||
double precision :: u(n+1)
|
||||
double precision, parameter :: two_pi = 2.d0*dacos(-1.d0)
|
||||
integer :: i
|
||||
|
||||
call random_number(u)
|
||||
if (iand(n,1) == 0) then
|
||||
! n is even
|
||||
do i=1,n,2
|
||||
z(i) = dsqrt(-2.d0*dlog(u(i)))
|
||||
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
|
||||
z(i) = z(i) * dcos( two_pi*u(i+1) )
|
||||
end do
|
||||
else
|
||||
! n is odd
|
||||
do i=1,n-1,2
|
||||
z(i) = dsqrt(-2.d0*dlog(u(i)))
|
||||
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
|
||||
z(i) = z(i) * dcos( two_pi*u(i+1) )
|
||||
end do
|
||||
z(n) = dsqrt(-2.d0*dlog(u(n)))
|
||||
z(n) = z(n) * dcos( two_pi*u(n+1) )
|
||||
end if
|
||||
end subroutine random_gauss
|
||||
#+END_SRC
|
||||
|
||||
|
||||
Now the sampling probability can be inserted into the equation of the energy:
|
||||
|
||||
We will now use the square of the wave function to sample random
|
||||
points distributed with the probability density
|
||||
\[
|
||||
E = \frac{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r})\right]^2}{P(\mathbf{r})}\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r}) \right]^2}{P(\mathbf{r})} d\mathbf{r}}
|
||||
P(\mathbf{r}) = \left[\Psi(\mathbf{r})\right]^2
|
||||
\]
|
||||
|
||||
with the Gaussian probability
|
||||
|
||||
\[
|
||||
P(\mathbf{r}) = \frac{1}{(2 \pi)^{3/2}}\exp\left( -\frac{\mathbf{r}^2}{2} \right).
|
||||
\]
|
||||
|
||||
As the coordinates are drawn with probability $P(\mathbf{r})$, the
|
||||
average energy can be computed as
|
||||
The expression of the average energy is now simplified to the average of
|
||||
the local energies, since the weights are taken care of by the
|
||||
sampling :
|
||||
|
||||
$$
|
||||
E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
|
||||
w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r}_i)} \delta \mathbf{r}
|
||||
E \approx \frac{1}{M}\sum_{i=1}^M E_L(\mathbf{r}_i)
|
||||
$$
|
||||
|
||||
|
||||
To sample a chosen probability density, an efficient method is the
|
||||
[[https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm][Metropolis-Hastings sampling algorithm]]. Starting from a random
|
||||
initial position $\mathbf{r}_0$, we will realize a random walk as follows:
|
||||
|
||||
$$
|
||||
\mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau \mathbf{u}
|
||||
$$
|
||||
|
||||
where $\tau$ is a fixed constant (the so-called /time-step/), and
|
||||
$\mathbf{u}$ is a uniform random number in a 3-dimensional box
|
||||
$(-1,-1,-1) \le \mathbf{u} \le (1,1,1)$. We will then add the
|
||||
accept/reject step that will guarantee that the distribution of the
|
||||
$\mathbf{r}_n$ is $\Psi^2$:
|
||||
|
||||
- Compute a new position $\mathbf{r}_{n+1}$
|
||||
- Draw a uniform random number $v \in [0,1]$
|
||||
- Compute the ratio $R = \frac{\left[\Psi(\mathbf{r}_{n+1})\right]^2}{\left[\Psi(\mathbf{r}_{n})\right]^2}$
|
||||
- if $v \le R$, accept the move (do nothing)
|
||||
- else, reject the move (set $\mathbf{r}_{n+1} = \mathbf{r}_n$)
|
||||
- evaluate the local energy at $\mathbf{r}_{n+1}$
|
||||
|
||||
#+begin_note
|
||||
A common error is to remove the rejected samples from the
|
||||
calculation of the average. *Don't do it!*
|
||||
|
||||
All samples should be kept, from both accepted and rejected moves.
|
||||
#+end_note
|
||||
|
||||
If the time step is infinitely small, the ratio will be very close
|
||||
to one and all the steps will be accepted. But the trajectory will
|
||||
be infinitely too short to have statistical significance.
|
||||
|
||||
On the other hand, as the time step increases, the number of
|
||||
accepted steps will decrease because the ratios might become
|
||||
small. If the number of accepted steps is close to zero, then the
|
||||
space is not well sampled either.
|
||||
|
||||
The time step should be adjusted so that it is as large as
|
||||
possible, keeping the number of accepted steps not too small. To
|
||||
achieve that we define the acceptance rate as the number of
|
||||
accepted steps over the total number of steps. Adjusting the time
|
||||
step such that the acceptance rate is close to 0.5 is a good compromise.
|
||||
|
||||
|
||||
*** Exercise
|
||||
|
||||
#+begin_exercise
|
||||
Modify the exercise of the previous section to sample with
|
||||
Gaussian-distributed random numbers. Can you see an reduction in
|
||||
the statistical error?
|
||||
Modify the program of the previous section to compute the energy, sampling with
|
||||
$Psi^2$.
|
||||
Compute also the acceptance rate, so that you can adapt the time
|
||||
step in order to have an acceptance rate close to 0.5 .
|
||||
Can you observe a reduction in the statistical error?
|
||||
#+end_exercise
|
||||
|
||||
*Python*
|
||||
@ -893,91 +884,110 @@ end subroutine random_gauss
|
||||
from hydrogen import *
|
||||
from qmc_stats import *
|
||||
|
||||
norm_gauss = 1./(2.*np.pi)**(1.5)
|
||||
def gaussian(r):
|
||||
return norm_gauss * np.exp(-np.dot(r,r)*0.5)
|
||||
|
||||
def MonteCarlo(a,nmax):
|
||||
def MonteCarlo(a,nmax,tau):
|
||||
E = 0.
|
||||
N = 0.
|
||||
N_accep = 0.
|
||||
r_old = np.random.uniform(-tau, tau, (3))
|
||||
psi_old = psi(a,r_old)
|
||||
for istep in range(nmax):
|
||||
r = np.random.normal(loc=0., scale=1.0, size=(3))
|
||||
w = psi(a,r)
|
||||
w = w*w / gaussian(r)
|
||||
N += w
|
||||
E += w * e_loc(a,r)
|
||||
return E/N
|
||||
r_new = r_old + np.random.uniform(-tau,tau,(3))
|
||||
psi_new = psi(a,r_new)
|
||||
ratio = (psi_new / psi_old)**2
|
||||
v = np.random.uniform(0,1,(1))
|
||||
if v < ratio:
|
||||
N_accep += 1.
|
||||
r_old = r_new
|
||||
psi_old = psi_new
|
||||
N += 1.
|
||||
E += e_loc(a,r_old)
|
||||
return E/N, N_accep/N
|
||||
|
||||
a = 0.9
|
||||
nmax = 100000
|
||||
X = [MonteCarlo(a,nmax) for i in range(30)]
|
||||
tau = 1.3
|
||||
X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
|
||||
X = [ x for x, _ in X0 ]
|
||||
A = [ x for _, x in X0 ]
|
||||
E, deltaE = ave_error(X)
|
||||
A, deltaA = ave_error(A)
|
||||
print(f"E = {E} +/- {deltaE}")
|
||||
print(f"A = {A} +/- {deltaA}")
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
: E = -0.49511014287471955 +/- 0.00012402022172236656
|
||||
|
||||
: E = -0.4950720838131573 +/- 0.00019089638602238043
|
||||
: A = 0.5172960000000001 +/- 0.0003443446549306529
|
||||
|
||||
*Fortran*
|
||||
#+BEGIN_SRC f90
|
||||
double precision function gaussian(r)
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, parameter :: norm_gauss = 1.d0/(2.d0*dacos(-1.d0))**(1.5d0)
|
||||
gaussian = norm_gauss * dexp( -0.5d0 * (r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
|
||||
end function gaussian
|
||||
|
||||
|
||||
subroutine gaussian_montecarlo(a,nmax,energy)
|
||||
subroutine metropolis_montecarlo(a,nmax,tau,energy,accep)
|
||||
implicit none
|
||||
double precision, intent(in) :: a
|
||||
integer*8 , intent(in) :: nmax
|
||||
double precision, intent(in) :: tau
|
||||
double precision, intent(out) :: energy
|
||||
double precision, intent(out) :: accep
|
||||
|
||||
integer*8 :: istep
|
||||
|
||||
double precision :: norm, r(3), w
|
||||
|
||||
double precision :: norm, r_old(3), r_new(3), psi_old, psi_new
|
||||
double precision :: v, ratio, n_accep
|
||||
double precision, external :: e_loc, psi, gaussian
|
||||
|
||||
energy = 0.d0
|
||||
norm = 0.d0
|
||||
n_accep = 0.d0
|
||||
call random_number(r_old)
|
||||
r_old(:) = tau * (2.d0*r_old(:) - 1.d0)
|
||||
psi_old = psi(a,r_old)
|
||||
do istep = 1,nmax
|
||||
call random_gauss(r,3)
|
||||
w = psi(a,r)
|
||||
w = w*w / gaussian(r)
|
||||
norm = norm + w
|
||||
energy = energy + w * e_loc(a,r)
|
||||
call random_number(r_new)
|
||||
r_new(:) = r_old(:) + tau * (2.d0*r_new(:) - 1.d0)
|
||||
psi_new = psi(a,r_new)
|
||||
ratio = (psi_new / psi_old)**2
|
||||
call random_number(v)
|
||||
if (v < ratio) then
|
||||
r_old(:) = r_new(:)
|
||||
psi_old = psi_new
|
||||
n_accep = n_accep + 1.d0
|
||||
endif
|
||||
norm = norm + 1.d0
|
||||
energy = energy + e_loc(a,r_old)
|
||||
end do
|
||||
energy = energy / norm
|
||||
end subroutine gaussian_montecarlo
|
||||
accep = n_accep / norm
|
||||
end subroutine metropolis_montecarlo
|
||||
|
||||
program qmc
|
||||
implicit none
|
||||
double precision, parameter :: a = 0.9
|
||||
double precision, parameter :: a = 0.9d0
|
||||
double precision, parameter :: tau = 1.3d0
|
||||
integer*8 , parameter :: nmax = 100000
|
||||
integer , parameter :: nruns = 30
|
||||
|
||||
integer :: irun
|
||||
double precision :: X(nruns)
|
||||
double precision :: X(nruns), Y(nruns)
|
||||
double precision :: ave, err
|
||||
|
||||
do irun=1,nruns
|
||||
call gaussian_montecarlo(a,nmax,X(irun))
|
||||
call metropolis_montecarlo(a,nmax,tau,X(irun),Y(irun))
|
||||
enddo
|
||||
call ave_error(X,nruns,ave,err)
|
||||
print *, 'E = ', ave, '+/-', err
|
||||
call ave_error(Y,nruns,ave,err)
|
||||
print *, 'A = ', ave, '+/-', err
|
||||
end program qmc
|
||||
#+END_SRC
|
||||
|
||||
#+begin_src sh :results output :exports both
|
||||
gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian
|
||||
./qmc_gaussian
|
||||
gfortran hydrogen.f90 qmc_stats.f90 qmc_metropolis.f90 -o qmc_metropolis
|
||||
./qmc_metropolis
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: E = -0.49517104619091717 +/- 1.0685523607878961E-004
|
||||
: E = -0.49478505004797046 +/- 2.0493795299184956E-004
|
||||
: A = 0.51737800000000000 +/- 4.1827406733181444E-004
|
||||
|
||||
|
||||
** Sampling with $\Psi^2$
|
||||
|
||||
@ -1206,7 +1216,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc
|
||||
#+RESULTS:
|
||||
: E = -0.48584030499187431 +/- 1.0411743995438257E-004
|
||||
|
||||
*** Metropolis algorithm
|
||||
*** Generalized Metropolis algorithm
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle vmc_metropolis.py
|
||||
:header-args:f90: :tangle vmc_metropolis.f90
|
||||
@ -1225,17 +1235,19 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc
|
||||
entering $\mathbf{r}_{n+1}$:
|
||||
|
||||
\[ A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = \min \left( 1,
|
||||
\frac{g(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})}
|
||||
{g(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})}
|
||||
\frac{T(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})}
|
||||
{T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})}
|
||||
\right)
|
||||
\]
|
||||
where $T(\mathbf{r}_n \rightarrow \mathbf{r}_{n+1})$ is the
|
||||
probability of transition from $\mathbf{r}_n$ to $\mathbf{r}_{n+1})$.
|
||||
|
||||
In our Hydrogen atom example, $P$ is $\Psi^2$ and $g$ is a
|
||||
solution of the discretized Fokker-Planck equation:
|
||||
|
||||
\begin{eqnarray*}
|
||||
P(r_{n}) &=& \Psi^2(\mathbf{r}_n) \\
|
||||
g(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) & = &
|
||||
T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) & = &
|
||||
\frac{1}{(4\pi\,D\,\tau)^{3/2}} \exp \left[ - \frac{\left(
|
||||
\mathbf{r}_{n+1} - \mathbf{r}_{n} - 2D \frac{\nabla
|
||||
\Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{4D\,\tau} \right]
|
||||
@ -1247,8 +1259,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc
|
||||
- if $u \le A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})$, accept
|
||||
the move
|
||||
- if $u>A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})$, reject
|
||||
the move: set $\mathbf{r}_{n+1} = \mathbf{r}_{n}$, but *don't
|
||||
remove the sample from the average!*
|
||||
the move: set $\mathbf{r}_{n+1} = \mathbf{r}_{n}$, but *don't remove the sample from the average!*
|
||||
|
||||
The /acceptance rate/ is the ratio of the number of accepted step
|
||||
over the total number of steps. The time step should be adapted so
|
||||
@ -1567,3 +1578,180 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
* Appendix
|
||||
|
||||
** Gaussian sampling :noexport:
|
||||
:PROPERTIES:
|
||||
:header-args:python: :tangle qmc_gaussian.py
|
||||
:header-args:f90: :tangle qmc_gaussian.f90
|
||||
:END:
|
||||
|
||||
We will now improve the sampling and allow to sample in the whole
|
||||
3D space, correcting the bias related to the sampling in the box.
|
||||
|
||||
Instead of drawing uniform random numbers, we will draw Gaussian
|
||||
random numbers centered on 0 and with a variance of 1.
|
||||
|
||||
To obtain Gaussian-distributed random numbers, you can apply the
|
||||
[[https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform][Box Muller transform]] to uniform random numbers:
|
||||
|
||||
\begin{eqnarray*}
|
||||
z_1 &=& \sqrt{-2 \ln u_1} \cos(2 \pi u_2) \\
|
||||
z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2)
|
||||
\end{eqnarray*}
|
||||
|
||||
Here is a Fortran implementation returning a Gaussian-distributed
|
||||
n-dimensional vector $\mathbf{z}$;
|
||||
|
||||
*Fortran*
|
||||
#+BEGIN_SRC f90 :tangle qmc_stats.f90
|
||||
subroutine random_gauss(z,n)
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
double precision, intent(out) :: z(n)
|
||||
double precision :: u(n+1)
|
||||
double precision, parameter :: two_pi = 2.d0*dacos(-1.d0)
|
||||
integer :: i
|
||||
|
||||
call random_number(u)
|
||||
if (iand(n,1) == 0) then
|
||||
! n is even
|
||||
do i=1,n,2
|
||||
z(i) = dsqrt(-2.d0*dlog(u(i)))
|
||||
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
|
||||
z(i) = z(i) * dcos( two_pi*u(i+1) )
|
||||
end do
|
||||
else
|
||||
! n is odd
|
||||
do i=1,n-1,2
|
||||
z(i) = dsqrt(-2.d0*dlog(u(i)))
|
||||
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
|
||||
z(i) = z(i) * dcos( two_pi*u(i+1) )
|
||||
end do
|
||||
z(n) = dsqrt(-2.d0*dlog(u(n)))
|
||||
z(n) = z(n) * dcos( two_pi*u(n+1) )
|
||||
end if
|
||||
end subroutine random_gauss
|
||||
#+END_SRC
|
||||
|
||||
Now the sampling probability can be inserted into the equation of the energy:
|
||||
|
||||
\[
|
||||
E = \frac{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r})\right]^2}{P(\mathbf{r})}\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r}) \right]^2}{P(\mathbf{r})} d\mathbf{r}}
|
||||
\]
|
||||
|
||||
with the Gaussian probability
|
||||
|
||||
\[
|
||||
P(\mathbf{r}) = \frac{1}{(2 \pi)^{3/2}}\exp\left( -\frac{\mathbf{r}^2}{2} \right).
|
||||
\]
|
||||
|
||||
As the coordinates are drawn with probability $P(\mathbf{r})$, the
|
||||
average energy can be computed as
|
||||
|
||||
$$
|
||||
E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
|
||||
w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r}_i)} \delta \mathbf{r}
|
||||
$$
|
||||
|
||||
|
||||
*** Exercise
|
||||
|
||||
#+begin_exercise
|
||||
Modify the program of the previous section to sample with
|
||||
Gaussian-distributed random numbers. Can you see an reduction in
|
||||
the statistical error?
|
||||
#+end_exercise
|
||||
|
||||
*Python*
|
||||
#+BEGIN_SRC python :results output
|
||||
from hydrogen import *
|
||||
from qmc_stats import *
|
||||
|
||||
norm_gauss = 1./(2.*np.pi)**(1.5)
|
||||
def gaussian(r):
|
||||
return norm_gauss * np.exp(-np.dot(r,r)*0.5)
|
||||
|
||||
def MonteCarlo(a,nmax):
|
||||
E = 0.
|
||||
N = 0.
|
||||
for istep in range(nmax):
|
||||
r = np.random.normal(loc=0., scale=1.0, size=(3))
|
||||
w = psi(a,r)
|
||||
w = w*w / gaussian(r)
|
||||
N += w
|
||||
E += w * e_loc(a,r)
|
||||
return E/N
|
||||
|
||||
a = 0.9
|
||||
nmax = 100000
|
||||
X = [MonteCarlo(a,nmax) for i in range(30)]
|
||||
E, deltaE = ave_error(X)
|
||||
print(f"E = {E} +/- {deltaE}")
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
: E = -0.49511014287471955 +/- 0.00012402022172236656
|
||||
|
||||
*Fortran*
|
||||
#+BEGIN_SRC f90
|
||||
double precision function gaussian(r)
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, parameter :: norm_gauss = 1.d0/(2.d0*dacos(-1.d0))**(1.5d0)
|
||||
gaussian = norm_gauss * dexp( -0.5d0 * (r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
|
||||
end function gaussian
|
||||
|
||||
|
||||
subroutine gaussian_montecarlo(a,nmax,energy)
|
||||
implicit none
|
||||
double precision, intent(in) :: a
|
||||
integer*8 , intent(in) :: nmax
|
||||
double precision, intent(out) :: energy
|
||||
|
||||
integer*8 :: istep
|
||||
|
||||
double precision :: norm, r(3), w
|
||||
|
||||
double precision, external :: e_loc, psi, gaussian
|
||||
|
||||
energy = 0.d0
|
||||
norm = 0.d0
|
||||
do istep = 1,nmax
|
||||
call random_gauss(r,3)
|
||||
w = psi(a,r)
|
||||
w = w*w / gaussian(r)
|
||||
norm = norm + w
|
||||
energy = energy + w * e_loc(a,r)
|
||||
end do
|
||||
energy = energy / norm
|
||||
end subroutine gaussian_montecarlo
|
||||
|
||||
program qmc
|
||||
implicit none
|
||||
double precision, parameter :: a = 0.9
|
||||
integer*8 , parameter :: nmax = 100000
|
||||
integer , parameter :: nruns = 30
|
||||
|
||||
integer :: irun
|
||||
double precision :: X(nruns)
|
||||
double precision :: ave, err
|
||||
|
||||
do irun=1,nruns
|
||||
call gaussian_montecarlo(a,nmax,X(irun))
|
||||
enddo
|
||||
call ave_error(X,nruns,ave,err)
|
||||
print *, 'E = ', ave, '+/-', err
|
||||
end program qmc
|
||||
#+END_SRC
|
||||
|
||||
#+begin_src sh :results output :exports both
|
||||
gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian
|
||||
./qmc_gaussian
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: E = -0.49517104619091717 +/- 1.0685523607878961E-004
|
||||
|
57
qmc_metropolis.f90
Normal file
57
qmc_metropolis.f90
Normal file
@ -0,0 +1,57 @@
|
||||
subroutine metropolis_montecarlo(a,nmax,tau,energy,accep)
|
||||
implicit none
|
||||
double precision, intent(in) :: a
|
||||
integer*8 , intent(in) :: nmax
|
||||
double precision, intent(in) :: tau
|
||||
double precision, intent(out) :: energy
|
||||
double precision, intent(out) :: accep
|
||||
|
||||
integer*8 :: istep
|
||||
|
||||
double precision :: norm, r_old(3), r_new(3), psi_old, psi_new
|
||||
double precision :: v, ratio, n_accep
|
||||
double precision, external :: e_loc, psi, gaussian
|
||||
|
||||
energy = 0.d0
|
||||
norm = 0.d0
|
||||
n_accep = 0.d0
|
||||
call random_number(r_old)
|
||||
r_old(:) = tau * (2.d0*r_old(:) - 1.d0)
|
||||
psi_old = psi(a,r_old)
|
||||
do istep = 1,nmax
|
||||
call random_number(r_new)
|
||||
r_new(:) = r_old(:) + tau * (2.d0*r_new(:) - 1.d0)
|
||||
psi_new = psi(a,r_new)
|
||||
ratio = (psi_new / psi_old)**2
|
||||
call random_number(v)
|
||||
if (v < ratio) then
|
||||
r_old(:) = r_new(:)
|
||||
psi_old = psi_new
|
||||
n_accep = n_accep + 1.d0
|
||||
endif
|
||||
norm = norm + 1.d0
|
||||
energy = energy + e_loc(a,r_old)
|
||||
end do
|
||||
energy = energy / norm
|
||||
accep = n_accep / norm
|
||||
end subroutine metropolis_montecarlo
|
||||
|
||||
program qmc
|
||||
implicit none
|
||||
double precision, parameter :: a = 0.9d0
|
||||
double precision, parameter :: tau = 1.3d0
|
||||
integer*8 , parameter :: nmax = 100000
|
||||
integer , parameter :: nruns = 30
|
||||
|
||||
integer :: irun
|
||||
double precision :: X(nruns), Y(nruns)
|
||||
double precision :: ave, err
|
||||
|
||||
do irun=1,nruns
|
||||
call metropolis_montecarlo(a,nmax,tau,X(irun),Y(irun))
|
||||
enddo
|
||||
call ave_error(X,nruns,ave,err)
|
||||
print *, 'E = ', ave, '+/-', err
|
||||
call ave_error(Y,nruns,ave,err)
|
||||
print *, 'A = ', ave, '+/-', err
|
||||
end program qmc
|
32
qmc_metropolis.py
Normal file
32
qmc_metropolis.py
Normal file
@ -0,0 +1,32 @@
|
||||
from hydrogen import *
|
||||
from qmc_stats import *
|
||||
|
||||
def MonteCarlo(a,nmax,tau):
|
||||
E = 0.
|
||||
N = 0.
|
||||
N_accep = 0.
|
||||
r_old = np.random.uniform(-tau, tau, (3))
|
||||
psi_old = psi(a,r_old)
|
||||
for istep in range(nmax):
|
||||
r_new = r_old + np.random.uniform(-tau,tau,(3))
|
||||
psi_new = psi(a,r_new)
|
||||
ratio = (psi_new / psi_old)**2
|
||||
v = np.random.uniform(0,1,(1))
|
||||
if v < ratio:
|
||||
N_accep += 1.
|
||||
r_old = r_new
|
||||
psi_old = psi_new
|
||||
N += 1.
|
||||
E += e_loc(a,r_old)
|
||||
return E/N, N_accep/N
|
||||
|
||||
a = 0.9
|
||||
nmax = 100000
|
||||
tau = 1.3
|
||||
X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
|
||||
X = [ x for x, _ in X0 ]
|
||||
A = [ x for _, x in X0 ]
|
||||
E, deltaE = ave_error(X)
|
||||
A, deltaA = ave_error(A)
|
||||
print(f"E = {E} +/- {deltaE}")
|
||||
print(f"A = {A} +/- {deltaA}")
|
@ -8,6 +8,7 @@ r = np.array([0.,0.,0.])
|
||||
|
||||
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
||||
E = 0.
|
||||
E2 = 0.
|
||||
norm = 0.
|
||||
for x in interval:
|
||||
r[0] = x
|
||||
@ -19,18 +20,9 @@ for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
|
||||
w = w * w * delta
|
||||
El = e_loc(a, r)
|
||||
E += w * El
|
||||
E2 += w * El*El
|
||||
norm += w
|
||||
E = E / norm
|
||||
s2 = 0.
|
||||
for x in interval:
|
||||
r[0] = x
|
||||
for y in interval:
|
||||
r[1] = y
|
||||
for z in interval:
|
||||
r[2] = z
|
||||
w = psi(a, r)
|
||||
w = w * w * delta
|
||||
El = e_loc(a, r)
|
||||
s2 += w * (El - E)**2
|
||||
s2 = s2 / norm
|
||||
E2 = E2 / norm
|
||||
s2 = E2 - E*E
|
||||
print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}")
|
||||
|
@ -34,8 +34,8 @@ def MonteCarlo(a,tau,nmax):
|
||||
|
||||
a = 0.9
|
||||
nmax = 100000
|
||||
tau = 2.5
|
||||
tau = 1.0
|
||||
X = [MonteCarlo(a,tau,nmax) for i in range(30)]
|
||||
E, deltaE = ave_error([x[0] for x in X])
|
||||
A, deltaA = ave_error([x[1] for x in X])
|
||||
print(f"E = {E} +/- {deltaE} {A} +/- {deltaA}")
|
||||
print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}")
|
||||
|
Loading…
Reference in New Issue
Block a user