1
0
mirror of https://github.com/TREX-CoE/qmc-lttc.git synced 2025-01-02 09:35:59 +01:00

Added Metropolis Markov chain

This commit is contained in:
Anthony Scemama 2021-01-20 18:31:49 +01:00
parent 1c48ffdfed
commit 0b59bb190f
5 changed files with 396 additions and 127 deletions

414
QMC.org
View File

@ -469,7 +469,7 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen
$$ $$
which can be simplified as which can be simplified as
$$ \sigma^2(E_L) = \langle E^2 \rangle - \langle E \rangle^2 $$ $$ \sigma^2(E_L) = \langle E_L^2 \rangle - \langle E_L \rangle^2 $$
If the local energy is constant (i.e. $\Psi$ is an eigenfunction of If the local energy is constant (i.e. $\Psi$ is an eigenfunction of
$\hat{H}$) the variance is zero, so the variance of the local $\hat{H}$) the variance is zero, so the variance of the local
@ -804,88 +804,79 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform
#+RESULTS: #+RESULTS:
: E = -0.49588321986667677 +/- 7.1758863546737969E-004 : E = -0.49588321986667677 +/- 7.1758863546737969E-004
** Gaussian sampling ** Metropolis sampling with $\Psi^2$
:PROPERTIES: :PROPERTIES:
:header-args:python: :tangle qmc_gaussian.py :header-args:python: :tangle qmc_metropolis.py
:header-args:f90: :tangle qmc_gaussian.f90 :header-args:f90: :tangle qmc_metropolis.f90
:END: :END:
We will now improve the sampling and allow to sample in the whole We will now use the square of the wave function to sample random
3D space, correcting the bias related to the sampling in the box. points distributed with the probability density
Instead of drawing uniform random numbers, we will draw Gaussian
random numbers centered on 0 and with a variance of 1.
To obtain Gaussian-distributed random numbers, you can apply the
[[https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform][Box Muller transform]] to uniform random numbers:
\begin{eqnarray*}
z_1 &=& \sqrt{-2 \ln u_1} \cos(2 \pi u_2) \\
z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2)
\end{eqnarray*}
Here is a Fortran implementation returning a Gaussian-distributed
n-dimensional vector $\mathbf{z}$;
*Fortran*
#+BEGIN_SRC f90 :tangle qmc_stats.f90
subroutine random_gauss(z,n)
implicit none
integer, intent(in) :: n
double precision, intent(out) :: z(n)
double precision :: u(n+1)
double precision, parameter :: two_pi = 2.d0*dacos(-1.d0)
integer :: i
call random_number(u)
if (iand(n,1) == 0) then
! n is even
do i=1,n,2
z(i) = dsqrt(-2.d0*dlog(u(i)))
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
z(i) = z(i) * dcos( two_pi*u(i+1) )
end do
else
! n is odd
do i=1,n-1,2
z(i) = dsqrt(-2.d0*dlog(u(i)))
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
z(i) = z(i) * dcos( two_pi*u(i+1) )
end do
z(n) = dsqrt(-2.d0*dlog(u(n)))
z(n) = z(n) * dcos( two_pi*u(n+1) )
end if
end subroutine random_gauss
#+END_SRC
Now the sampling probability can be inserted into the equation of the energy:
\[ \[
E = \frac{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r})\right]^2}{P(\mathbf{r})}\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r}) \right]^2}{P(\mathbf{r})} d\mathbf{r}} P(\mathbf{r}) = \left[\Psi(\mathbf{r})\right]^2
\] \]
with the Gaussian probability The expression of the average energy is now simplified to the average of
the local energies, since the weights are taken care of by the
\[ sampling :
P(\mathbf{r}) = \frac{1}{(2 \pi)^{3/2}}\exp\left( -\frac{\mathbf{r}^2}{2} \right).
\]
As the coordinates are drawn with probability $P(\mathbf{r})$, the
average energy can be computed as
$$ $$
E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\; E \approx \frac{1}{M}\sum_{i=1}^M E_L(\mathbf{r}_i)
w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r}_i)} \delta \mathbf{r}
$$ $$
To sample a chosen probability density, an efficient method is the
[[https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm][Metropolis-Hastings sampling algorithm]]. Starting from a random
initial position $\mathbf{r}_0$, we will realize a random walk as follows:
$$
\mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau \mathbf{u}
$$
where $\tau$ is a fixed constant (the so-called /time-step/), and
$\mathbf{u}$ is a uniform random number in a 3-dimensional box
$(-1,-1,-1) \le \mathbf{u} \le (1,1,1)$. We will then add the
accept/reject step that will guarantee that the distribution of the
$\mathbf{r}_n$ is $\Psi^2$:
- Compute a new position $\mathbf{r}_{n+1}$
- Draw a uniform random number $v \in [0,1]$
- Compute the ratio $R = \frac{\left[\Psi(\mathbf{r}_{n+1})\right]^2}{\left[\Psi(\mathbf{r}_{n})\right]^2}$
- if $v \le R$, accept the move (do nothing)
- else, reject the move (set $\mathbf{r}_{n+1} = \mathbf{r}_n$)
- evaluate the local energy at $\mathbf{r}_{n+1}$
#+begin_note
A common error is to remove the rejected samples from the
calculation of the average. *Don't do it!*
All samples should be kept, from both accepted and rejected moves.
#+end_note
If the time step is infinitely small, the ratio will be very close
to one and all the steps will be accepted. But the trajectory will
be infinitely too short to have statistical significance.
On the other hand, as the time step increases, the number of
accepted steps will decrease because the ratios might become
small. If the number of accepted steps is close to zero, then the
space is not well sampled either.
The time step should be adjusted so that it is as large as
possible, keeping the number of accepted steps not too small. To
achieve that we define the acceptance rate as the number of
accepted steps over the total number of steps. Adjusting the time
step such that the acceptance rate is close to 0.5 is a good compromise.
*** Exercise *** Exercise
#+begin_exercise #+begin_exercise
Modify the exercise of the previous section to sample with Modify the program of the previous section to compute the energy, sampling with
Gaussian-distributed random numbers. Can you see an reduction in $Psi^2$.
the statistical error? Compute also the acceptance rate, so that you can adapt the time
step in order to have an acceptance rate close to 0.5 .
Can you observe a reduction in the statistical error?
#+end_exercise #+end_exercise
*Python* *Python*
@ -893,91 +884,110 @@ end subroutine random_gauss
from hydrogen import * from hydrogen import *
from qmc_stats import * from qmc_stats import *
norm_gauss = 1./(2.*np.pi)**(1.5) def MonteCarlo(a,nmax,tau):
def gaussian(r):
return norm_gauss * np.exp(-np.dot(r,r)*0.5)
def MonteCarlo(a,nmax):
E = 0. E = 0.
N = 0. N = 0.
N_accep = 0.
r_old = np.random.uniform(-tau, tau, (3))
psi_old = psi(a,r_old)
for istep in range(nmax): for istep in range(nmax):
r = np.random.normal(loc=0., scale=1.0, size=(3)) r_new = r_old + np.random.uniform(-tau,tau,(3))
w = psi(a,r) psi_new = psi(a,r_new)
w = w*w / gaussian(r) ratio = (psi_new / psi_old)**2
N += w v = np.random.uniform(0,1,(1))
E += w * e_loc(a,r) if v < ratio:
return E/N N_accep += 1.
r_old = r_new
psi_old = psi_new
N += 1.
E += e_loc(a,r_old)
return E/N, N_accep/N
a = 0.9 a = 0.9
nmax = 100000 nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)] tau = 1.3
X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
X = [ x for x, _ in X0 ]
A = [ x for _, x in X0 ]
E, deltaE = ave_error(X) E, deltaE = ave_error(X)
A, deltaA = ave_error(A)
print(f"E = {E} +/- {deltaE}") print(f"E = {E} +/- {deltaE}")
print(f"A = {A} +/- {deltaA}")
#+END_SRC #+END_SRC
#+RESULTS: #+RESULTS:
: E = -0.49511014287471955 +/- 0.00012402022172236656 : E = -0.4950720838131573 +/- 0.00019089638602238043
: A = 0.5172960000000001 +/- 0.0003443446549306529
*Fortran* *Fortran*
#+BEGIN_SRC f90 #+BEGIN_SRC f90
double precision function gaussian(r) subroutine metropolis_montecarlo(a,nmax,tau,energy,accep)
implicit none
double precision, intent(in) :: r(3)
double precision, parameter :: norm_gauss = 1.d0/(2.d0*dacos(-1.d0))**(1.5d0)
gaussian = norm_gauss * dexp( -0.5d0 * (r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
end function gaussian
subroutine gaussian_montecarlo(a,nmax,energy)
implicit none implicit none
double precision, intent(in) :: a double precision, intent(in) :: a
integer*8 , intent(in) :: nmax integer*8 , intent(in) :: nmax
double precision, intent(in) :: tau
double precision, intent(out) :: energy double precision, intent(out) :: energy
double precision, intent(out) :: accep
integer*8 :: istep integer*8 :: istep
double precision :: norm, r(3), w double precision :: norm, r_old(3), r_new(3), psi_old, psi_new
double precision :: v, ratio, n_accep
double precision, external :: e_loc, psi, gaussian double precision, external :: e_loc, psi, gaussian
energy = 0.d0 energy = 0.d0
norm = 0.d0 norm = 0.d0
n_accep = 0.d0
call random_number(r_old)
r_old(:) = tau * (2.d0*r_old(:) - 1.d0)
psi_old = psi(a,r_old)
do istep = 1,nmax do istep = 1,nmax
call random_gauss(r,3) call random_number(r_new)
w = psi(a,r) r_new(:) = r_old(:) + tau * (2.d0*r_new(:) - 1.d0)
w = w*w / gaussian(r) psi_new = psi(a,r_new)
norm = norm + w ratio = (psi_new / psi_old)**2
energy = energy + w * e_loc(a,r) call random_number(v)
if (v < ratio) then
r_old(:) = r_new(:)
psi_old = psi_new
n_accep = n_accep + 1.d0
endif
norm = norm + 1.d0
energy = energy + e_loc(a,r_old)
end do end do
energy = energy / norm energy = energy / norm
end subroutine gaussian_montecarlo accep = n_accep / norm
end subroutine metropolis_montecarlo
program qmc program qmc
implicit none implicit none
double precision, parameter :: a = 0.9 double precision, parameter :: a = 0.9d0
double precision, parameter :: tau = 1.3d0
integer*8 , parameter :: nmax = 100000 integer*8 , parameter :: nmax = 100000
integer , parameter :: nruns = 30 integer , parameter :: nruns = 30
integer :: irun integer :: irun
double precision :: X(nruns) double precision :: X(nruns), Y(nruns)
double precision :: ave, err double precision :: ave, err
do irun=1,nruns do irun=1,nruns
call gaussian_montecarlo(a,nmax,X(irun)) call metropolis_montecarlo(a,nmax,tau,X(irun),Y(irun))
enddo enddo
call ave_error(X,nruns,ave,err) call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err print *, 'E = ', ave, '+/-', err
call ave_error(Y,nruns,ave,err)
print *, 'A = ', ave, '+/-', err
end program qmc end program qmc
#+END_SRC #+END_SRC
#+begin_src sh :results output :exports both #+begin_src sh :results output :exports both
gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian gfortran hydrogen.f90 qmc_stats.f90 qmc_metropolis.f90 -o qmc_metropolis
./qmc_gaussian ./qmc_metropolis
#+end_src #+end_src
#+RESULTS: #+RESULTS:
: E = -0.49517104619091717 +/- 1.0685523607878961E-004 : E = -0.49478505004797046 +/- 2.0493795299184956E-004
: A = 0.51737800000000000 +/- 4.1827406733181444E-004
** Sampling with $\Psi^2$ ** Sampling with $\Psi^2$
@ -1206,7 +1216,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc
#+RESULTS: #+RESULTS:
: E = -0.48584030499187431 +/- 1.0411743995438257E-004 : E = -0.48584030499187431 +/- 1.0411743995438257E-004
*** Metropolis algorithm *** Generalized Metropolis algorithm
:PROPERTIES: :PROPERTIES:
:header-args:python: :tangle vmc_metropolis.py :header-args:python: :tangle vmc_metropolis.py
:header-args:f90: :tangle vmc_metropolis.f90 :header-args:f90: :tangle vmc_metropolis.f90
@ -1225,17 +1235,19 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc
entering $\mathbf{r}_{n+1}$: entering $\mathbf{r}_{n+1}$:
\[ A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = \min \left( 1, \[ A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = \min \left( 1,
\frac{g(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})} \frac{T(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})}
{g(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})} {T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})}
\right) \right)
\] \]
where $T(\mathbf{r}_n \rightarrow \mathbf{r}_{n+1})$ is the
probability of transition from $\mathbf{r}_n$ to $\mathbf{r}_{n+1})$.
In our Hydrogen atom example, $P$ is $\Psi^2$ and $g$ is a In our Hydrogen atom example, $P$ is $\Psi^2$ and $g$ is a
solution of the discretized Fokker-Planck equation: solution of the discretized Fokker-Planck equation:
\begin{eqnarray*} \begin{eqnarray*}
P(r_{n}) &=& \Psi^2(\mathbf{r}_n) \\ P(r_{n}) &=& \Psi^2(\mathbf{r}_n) \\
g(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) & = & T(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) & = &
\frac{1}{(4\pi\,D\,\tau)^{3/2}} \exp \left[ - \frac{\left( \frac{1}{(4\pi\,D\,\tau)^{3/2}} \exp \left[ - \frac{\left(
\mathbf{r}_{n+1} - \mathbf{r}_{n} - 2D \frac{\nabla \mathbf{r}_{n+1} - \mathbf{r}_{n} - 2D \frac{\nabla
\Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{4D\,\tau} \right] \Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{4D\,\tau} \right]
@ -1247,8 +1259,7 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc
- if $u \le A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})$, accept - if $u \le A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})$, accept
the move the move
- if $u>A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})$, reject - if $u>A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})$, reject
the move: set $\mathbf{r}_{n+1} = \mathbf{r}_{n}$, but *don't the move: set $\mathbf{r}_{n+1} = \mathbf{r}_{n}$, but *don't remove the sample from the average!*
remove the sample from the average!*
The /acceptance rate/ is the ratio of the number of accepted step The /acceptance rate/ is the ratio of the number of accepted step
over the total number of steps. The time step should be adapted so over the total number of steps. The time step should be adapted so
@ -1567,3 +1578,180 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc_metropolis.f90 -o vmc_metropolis
* Appendix
** Gaussian sampling :noexport:
:PROPERTIES:
:header-args:python: :tangle qmc_gaussian.py
:header-args:f90: :tangle qmc_gaussian.f90
:END:
We will now improve the sampling and allow to sample in the whole
3D space, correcting the bias related to the sampling in the box.
Instead of drawing uniform random numbers, we will draw Gaussian
random numbers centered on 0 and with a variance of 1.
To obtain Gaussian-distributed random numbers, you can apply the
[[https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform][Box Muller transform]] to uniform random numbers:
\begin{eqnarray*}
z_1 &=& \sqrt{-2 \ln u_1} \cos(2 \pi u_2) \\
z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2)
\end{eqnarray*}
Here is a Fortran implementation returning a Gaussian-distributed
n-dimensional vector $\mathbf{z}$;
*Fortran*
#+BEGIN_SRC f90 :tangle qmc_stats.f90
subroutine random_gauss(z,n)
implicit none
integer, intent(in) :: n
double precision, intent(out) :: z(n)
double precision :: u(n+1)
double precision, parameter :: two_pi = 2.d0*dacos(-1.d0)
integer :: i
call random_number(u)
if (iand(n,1) == 0) then
! n is even
do i=1,n,2
z(i) = dsqrt(-2.d0*dlog(u(i)))
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
z(i) = z(i) * dcos( two_pi*u(i+1) )
end do
else
! n is odd
do i=1,n-1,2
z(i) = dsqrt(-2.d0*dlog(u(i)))
z(i+1) = z(i) * dsin( two_pi*u(i+1) )
z(i) = z(i) * dcos( two_pi*u(i+1) )
end do
z(n) = dsqrt(-2.d0*dlog(u(n)))
z(n) = z(n) * dcos( two_pi*u(n+1) )
end if
end subroutine random_gauss
#+END_SRC
Now the sampling probability can be inserted into the equation of the energy:
\[
E = \frac{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r})\right]^2}{P(\mathbf{r})}\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r}) \right]^2}{P(\mathbf{r})} d\mathbf{r}}
\]
with the Gaussian probability
\[
P(\mathbf{r}) = \frac{1}{(2 \pi)^{3/2}}\exp\left( -\frac{\mathbf{r}^2}{2} \right).
\]
As the coordinates are drawn with probability $P(\mathbf{r})$, the
average energy can be computed as
$$
E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\;
w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r}_i)} \delta \mathbf{r}
$$
*** Exercise
#+begin_exercise
Modify the program of the previous section to sample with
Gaussian-distributed random numbers. Can you see an reduction in
the statistical error?
#+end_exercise
*Python*
#+BEGIN_SRC python :results output
from hydrogen import *
from qmc_stats import *
norm_gauss = 1./(2.*np.pi)**(1.5)
def gaussian(r):
return norm_gauss * np.exp(-np.dot(r,r)*0.5)
def MonteCarlo(a,nmax):
E = 0.
N = 0.
for istep in range(nmax):
r = np.random.normal(loc=0., scale=1.0, size=(3))
w = psi(a,r)
w = w*w / gaussian(r)
N += w
E += w * e_loc(a,r)
return E/N
a = 0.9
nmax = 100000
X = [MonteCarlo(a,nmax) for i in range(30)]
E, deltaE = ave_error(X)
print(f"E = {E} +/- {deltaE}")
#+END_SRC
#+RESULTS:
: E = -0.49511014287471955 +/- 0.00012402022172236656
*Fortran*
#+BEGIN_SRC f90
double precision function gaussian(r)
implicit none
double precision, intent(in) :: r(3)
double precision, parameter :: norm_gauss = 1.d0/(2.d0*dacos(-1.d0))**(1.5d0)
gaussian = norm_gauss * dexp( -0.5d0 * (r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ))
end function gaussian
subroutine gaussian_montecarlo(a,nmax,energy)
implicit none
double precision, intent(in) :: a
integer*8 , intent(in) :: nmax
double precision, intent(out) :: energy
integer*8 :: istep
double precision :: norm, r(3), w
double precision, external :: e_loc, psi, gaussian
energy = 0.d0
norm = 0.d0
do istep = 1,nmax
call random_gauss(r,3)
w = psi(a,r)
w = w*w / gaussian(r)
norm = norm + w
energy = energy + w * e_loc(a,r)
end do
energy = energy / norm
end subroutine gaussian_montecarlo
program qmc
implicit none
double precision, parameter :: a = 0.9
integer*8 , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns)
double precision :: ave, err
do irun=1,nruns
call gaussian_montecarlo(a,nmax,X(irun))
enddo
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
end program qmc
#+END_SRC
#+begin_src sh :results output :exports both
gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian
./qmc_gaussian
#+end_src
#+RESULTS:
: E = -0.49517104619091717 +/- 1.0685523607878961E-004

57
qmc_metropolis.f90 Normal file
View File

@ -0,0 +1,57 @@
subroutine metropolis_montecarlo(a,nmax,tau,energy,accep)
implicit none
double precision, intent(in) :: a
integer*8 , intent(in) :: nmax
double precision, intent(in) :: tau
double precision, intent(out) :: energy
double precision, intent(out) :: accep
integer*8 :: istep
double precision :: norm, r_old(3), r_new(3), psi_old, psi_new
double precision :: v, ratio, n_accep
double precision, external :: e_loc, psi, gaussian
energy = 0.d0
norm = 0.d0
n_accep = 0.d0
call random_number(r_old)
r_old(:) = tau * (2.d0*r_old(:) - 1.d0)
psi_old = psi(a,r_old)
do istep = 1,nmax
call random_number(r_new)
r_new(:) = r_old(:) + tau * (2.d0*r_new(:) - 1.d0)
psi_new = psi(a,r_new)
ratio = (psi_new / psi_old)**2
call random_number(v)
if (v < ratio) then
r_old(:) = r_new(:)
psi_old = psi_new
n_accep = n_accep + 1.d0
endif
norm = norm + 1.d0
energy = energy + e_loc(a,r_old)
end do
energy = energy / norm
accep = n_accep / norm
end subroutine metropolis_montecarlo
program qmc
implicit none
double precision, parameter :: a = 0.9d0
double precision, parameter :: tau = 1.3d0
integer*8 , parameter :: nmax = 100000
integer , parameter :: nruns = 30
integer :: irun
double precision :: X(nruns), Y(nruns)
double precision :: ave, err
do irun=1,nruns
call metropolis_montecarlo(a,nmax,tau,X(irun),Y(irun))
enddo
call ave_error(X,nruns,ave,err)
print *, 'E = ', ave, '+/-', err
call ave_error(Y,nruns,ave,err)
print *, 'A = ', ave, '+/-', err
end program qmc

32
qmc_metropolis.py Normal file
View File

@ -0,0 +1,32 @@
from hydrogen import *
from qmc_stats import *
def MonteCarlo(a,nmax,tau):
E = 0.
N = 0.
N_accep = 0.
r_old = np.random.uniform(-tau, tau, (3))
psi_old = psi(a,r_old)
for istep in range(nmax):
r_new = r_old + np.random.uniform(-tau,tau,(3))
psi_new = psi(a,r_new)
ratio = (psi_new / psi_old)**2
v = np.random.uniform(0,1,(1))
if v < ratio:
N_accep += 1.
r_old = r_new
psi_old = psi_new
N += 1.
E += e_loc(a,r_old)
return E/N, N_accep/N
a = 0.9
nmax = 100000
tau = 1.3
X0 = [ MonteCarlo(a,nmax,tau) for i in range(30)]
X = [ x for x, _ in X0 ]
A = [ x for _, x in X0 ]
E, deltaE = ave_error(X)
A, deltaA = ave_error(A)
print(f"E = {E} +/- {deltaE}")
print(f"A = {A} +/- {deltaA}")

View File

@ -8,6 +8,7 @@ r = np.array([0.,0.,0.])
for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]: for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
E = 0. E = 0.
E2 = 0.
norm = 0. norm = 0.
for x in interval: for x in interval:
r[0] = x r[0] = x
@ -19,18 +20,9 @@ for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]:
w = w * w * delta w = w * w * delta
El = e_loc(a, r) El = e_loc(a, r)
E += w * El E += w * El
E2 += w * El*El
norm += w norm += w
E = E / norm E = E / norm
s2 = 0. E2 = E2 / norm
for x in interval: s2 = E2 - E*E
r[0] = x
for y in interval:
r[1] = y
for z in interval:
r[2] = z
w = psi(a, r)
w = w * w * delta
El = e_loc(a, r)
s2 += w * (El - E)**2
s2 = s2 / norm
print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}") print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}")

View File

@ -34,8 +34,8 @@ def MonteCarlo(a,tau,nmax):
a = 0.9 a = 0.9
nmax = 100000 nmax = 100000
tau = 2.5 tau = 1.0
X = [MonteCarlo(a,tau,nmax) for i in range(30)] X = [MonteCarlo(a,tau,nmax) for i in range(30)]
E, deltaE = ave_error([x[0] for x in X]) E, deltaE = ave_error([x[0] for x in X])
A, deltaA = ave_error([x[1] for x in X]) A, deltaA = ave_error([x[1] for x in X])
print(f"E = {E} +/- {deltaE} {A} +/- {deltaA}") print(f"E = {E} +/- {deltaE}\nA = {A} +/- {deltaA}")