1
0
mirror of https://github.com/TREX-CoE/irpjast.git synced 2024-11-03 20:54:10 +01:00
irpjast/rescale.irp.f
2021-01-23 20:06:20 +01:00

321 lines
8.4 KiB
Fortran

BEGIN_PROVIDER [ double precision, kappa ]
implicit none
BEGIN_DOC
! Constant in rescaling
END_DOC
kappa = 0.6d0
END_PROVIDER
BEGIN_PROVIDER [ double precision, kappa_inv ]
implicit none
BEGIN_DOC
! inverse of kappa
END_DOC
kappa_inv = 1.0d0 / kappa
END_PROVIDER
BEGIN_PROVIDER [ double precision, rescale_ee, (nelec, nelec) ]
implicit none
BEGIN_DOC
! R = (1 - exp(-kappa r))/kappa for electron-electron for $J_{ee}$
END_DOC
integer :: i, j
double precision :: x
do j = 1, nelec
do i = 1, j-1
x = (1.0d0 - dexp(-kappa * elec_dist(i, j))) * kappa_inv
rescale_ee(i, j) = x
rescale_ee(j, i) = x
enddo
rescale_ee(j, j) = 0.d0
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, rescale_ee_deriv_e, (4, nelec, nelec) ]
implicit none
BEGIN_DOC
! R = (1 - exp(-kappa r))/kappa derived wrt x
! Dimensions 1-3 : dx, dy, dz
! Dimension 4 : d2x + d2y + d2z
END_DOC
integer :: i, j, ii
double precision :: f
do j = 1, nelec
do i = 1, nelec
f = 1.d0 - kappa*rescale_ee(i,j) ! == dexp(-kappa * elec_dist(i, j))
do ii = 1, 4
rescale_ee_deriv_e(ii, i, j) = elec_dist_deriv_e(ii, i, j)
end do
rescale_ee_deriv_e(4, i, j) = rescale_ee_deriv_e(4, i, j) + &
(-kappa * rescale_ee_deriv_e(1, i, j) * rescale_ee_deriv_e(1, i, j)) + &
(-kappa * rescale_ee_deriv_e(2, i, j) * rescale_ee_deriv_e(2, i, j)) + &
(-kappa * rescale_ee_deriv_e(3, i, j) * rescale_ee_deriv_e(3, i, j))
do ii = 1, 4
rescale_ee_deriv_e(ii, i, j) = rescale_ee_deriv_e(ii, i, j) &
* f
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, rescale_en, (nelec, nnuc) ]
implicit none
BEGIN_DOC
! R = (1 - exp(-kappa r))/kappa for electron-nucleus for $J_{en}$
END_DOC
integer :: i, a
do a = 1, nnuc
do i = 1, nelec
rescale_en(i, a) = (1.0d0 - dexp(-kappa * elnuc_dist(i, a))) * kappa_inv
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, rescale_en_deriv_e, (4, nelec, nnuc) ]
implicit none
BEGIN_DOC
! R = (1 - exp(-kappa r))/kappa derived wrt x
! Dimensions 1-3 : dx, dy, dz
! Dimension 4 : d2x + d2y + d2z
END_DOC
integer :: i, ii, a
double precision :: f
do a = 1, nnuc
do i = 1, nelec
f = 1.d0 - kappa*rescale_en(i,a) ! == dexp(-kappa * elnuc_dist(i, a))
do ii = 1, 4
rescale_en_deriv_e(ii, i, a) = elnuc_dist_deriv_e(ii, i, a)
end do
rescale_en_deriv_e(4, i, a) = rescale_en_deriv_e(4, i, a) + &
(-kappa * rescale_en_deriv_e(1, i, a) * rescale_en_deriv_e(1, i, a)) + &
(-kappa * rescale_en_deriv_e(2, i, a) * rescale_en_deriv_e(2, i, a)) + &
(-kappa * rescale_en_deriv_e(3, i, a) * rescale_en_deriv_e(3, i, a))
do ii = 1, 4
rescale_en_deriv_e(ii, i, a) = rescale_en_deriv_e(ii, i, a) &
* f
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, rescale_een_e, (nelec, nelec, 0:ncord)]
implicit none
BEGIN_DOC
! R = exp(-kappa r) for electron-electron for $J_{een}$
END_DOC
integer :: i, j, k, l
double precision :: x
double precision, parameter :: f = dexp(1.d0)
rescale_een_e(:, :, 0) = 1.d0
do l = 1, ncord
k=0
do j = 1, nelec
do i = 1, j-1
k = k+1
x = rescale_een_e_ij(k,l)
rescale_een_e(i, j, l) = x
rescale_een_e(j, i, l) = x
enddo
enddo
enddo
do l = 0, ncord
do j = 1, nelec
rescale_een_e(j, j, l) = 0.d0
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, rescale_een_e_ij, (nelec*(nelec-1)/2, 0:ncord)]
implicit none
BEGIN_DOC
! R = exp(-kappa r) for electron-electron for $J_{een}$
END_DOC
integer :: i, j, l,k
double precision :: x
double precision, parameter :: f = dexp(1.d0)
rescale_een_e_ij(:, 0) = 1.d0
k=0
do j = 1, nelec
do i = 1, j-1
k = k+1
rescale_een_e_ij(k, 1) = dexp(-kappa * elec_dist(i, j))
enddo
enddo
do l = 2, ncord
do k=1,(nelec*nelec-nelec)/2
rescale_een_e_ij(k, l) = rescale_een_e_ij(k, l-1) * rescale_een_e_ij(k, 1)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, rescale_een_n, (nelec, nnuc, 0:ncord)]
implicit none
BEGIN_DOC
! R = exp(-kappa r) for electron-electron for $J_{een}$
END_DOC
integer :: i, a, l
double precision :: x
double precision, parameter :: f = dexp(1.d0)
rescale_een_n(:,:,0) = 1.d0
do a = 1, nnuc
do i = 1, nelec
rescale_een_n(i, a, 1) = dexp(-kappa * elnuc_dist(i, a))
enddo
enddo
do l = 2, ncord
do a = 1, nnuc
do i = 1, nelec
rescale_een_n(i, a, l) = rescale_een_n(i, a, l-1) * rescale_een_n(i, a, 1)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, rescale_een_n_deriv_e, (4, nelec, nnuc, 0:ncord)]
implicit none
BEGIN_DOC
! Derivative of the scaled distance J_{een} wrt R_{ia}
END_DOC
integer :: i, ii, j, l, a
double precision :: kappa_l
do l = 0, ncord
kappa_l = - dble(l) * kappa
do a = 1, nnuc
do i = 1, nelec
! r'(x) \lor r''(x)
do ii = 1, 4
rescale_een_n_deriv_e(ii, i, a, l) = &
kappa_l * elnuc_dist_deriv_e(ii, i, a)
!print *, "pp", ii, i, a, elnuc_dist_deriv_e(ii, i, a)
enddo
! \left(r''(x)+r'(x)^2\right)
rescale_een_n_deriv_e(4, i, a, l) = rescale_een_n_deriv_e(4, i, a, l) + &
rescale_een_n_deriv_e(1, i, a, l) * rescale_een_n_deriv_e(1, i, a, l) + &
rescale_een_n_deriv_e(2, i, a, l) * rescale_een_n_deriv_e(2, i, a, l) + &
rescale_een_n_deriv_e(3, i, a, l) * rescale_een_n_deriv_e(3, i, a, l)
! \times e^{r(x)}
do ii = 1, 4
rescale_een_n_deriv_e(ii, i, a, l) = &
rescale_een_n_deriv_e(ii, i, a, l) * rescale_een_n(i, a, l)
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, elnuc_dist_deriv_e, (4, nelec, nnuc)]
BEGIN_DOC
! Derivative of R_{ia} wrt x
! Dimensions 1-3 : dx, dy, dz
! Dimension 4 : d2x + d2y + d2z
END_DOC
implicit none
integer :: i, ii, a
double precision :: ria_inv
do a = 1, nnuc
do i = 1, nelec
ria_inv = 1.0d0 / elnuc_dist(i, a)
do ii = 1, 3
! \frac{x-x0}{\sqrt{c+(x-x0)^2}}
elnuc_dist_deriv_e(ii, i, a) = (elec_coord(i, ii) - nuc_coord(a, ii)) * ria_inv
end do
elnuc_dist_deriv_e(4, i, a) = 2.0d0 * ria_inv
end do
end do
END_PROVIDER
BEGIN_PROVIDER [double precision, rescale_een_e_deriv_e, (4, nelec, nelec, 0:ncord)]
BEGIN_DOC
! Derivative of the scaled distance J_{een} wrt R_{ia}
END_DOC
implicit none
integer :: i, ii, j, l
double precision :: kappa_l
!TODO: Check if rescale_een_e_deriv_e(:,:,0) = 0.d0
do l = 0, ncord
kappa_l = - dble(l) * kappa
do j = 1, nelec
do i = 1, nelec
! r'(x) \lor r''(x)
do ii = 1, 4
rescale_een_e_deriv_e(ii, i, j, l) = &
kappa_l * elec_dist_deriv_e(ii, i, j)
enddo
! \left(r''(x)+r'(x)^2\right)
rescale_een_e_deriv_e(4, i, j, l) = rescale_een_e_deriv_e(4, i, j, l) + &
rescale_een_e_deriv_e(1, i, j, l) * rescale_een_e_deriv_e(1, i, j, l) + &
rescale_een_e_deriv_e(2, i, j, l) * rescale_een_e_deriv_e(2, i, j, l) + &
rescale_een_e_deriv_e(3, i, j, l) * rescale_een_e_deriv_e(3, i, j, l)
! \times e^{r(x)}
do ii = 1, 4
rescale_een_e_deriv_e(ii, i, j, l) = &
rescale_een_e_deriv_e(ii, i, j, l) * rescale_een_e(i, j, l)
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, rescale_een_e_deriv_e_t, (4, nelec, nelec, 0:ncord)]
implicit none
BEGIN_DOC
! Transposed rescale_een_e_deriv_e
END_DOC
integer :: i,j,k,l
do l=0,ncord
do j=1,nelec
do i=1,nelec
rescale_een_e_deriv_e_t(1:4,j,i,l) = rescale_een_e_deriv_e(1:4,i,j,l)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, elec_dist_deriv_e, (4, nelec, nelec)]
BEGIN_DOC
! Derivative of R_{ij} wrt x
! Dimensions 1-3 : dx, dy, dz
! Dimension 4 : d2x + d2y + d2z = 2/rij
END_DOC
implicit none
integer :: i, ii, j
double precision :: rij_inv
do j = 1, nelec
do i = 1, nelec
rij_inv = 1.0d0 / elec_dist(i, j)
do ii = 1, 3
! \frac{x-x0}{\sqrt{c+(x-x0)^2}}
elec_dist_deriv_e(ii, i, j) = (elec_coord(i, ii) - elec_coord(j, ii)) * rij_inv
end do
elec_dist_deriv_e(4, i, j) = 2.0d0 * rij_inv
end do
elec_dist_deriv_e(:, j, j) = 0.0d0
end do
END_PROVIDER