1
0
mirror of https://github.com/TREX-CoE/irpjast.git synced 2024-07-03 18:06:08 +02:00
irpjast/rescale.irp.f
2020-12-15 12:04:34 +01:00

213 lines
5.7 KiB
Fortran

BEGIN_PROVIDER [ double precision, kappa ]
implicit none
BEGIN_DOC
! Constant in rescaling
END_DOC
kappa = 0.6d0
END_PROVIDER
BEGIN_PROVIDER [ double precision, kappa_inv ]
implicit none
BEGIN_DOC
! inverse of kappa
END_DOC
kappa_inv = 1.0d0 / kappa
END_PROVIDER
BEGIN_PROVIDER [ double precision, rescale_ee, (nelec, nelec) ]
implicit none
BEGIN_DOC
! R = (1 - exp(-kappa r))/kappa for electron-electron for $J_{ee}$
END_DOC
integer :: i, j
do j = 1, nelec
do i = 1, nelec
rescale_ee(i, j) = (1.0d0 - dexp(-kappa * elec_dist(i, j))) * kappa_inv
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, rescale_en, (nelec, nnuc) ]
implicit none
BEGIN_DOC
! R = (1 - exp(-kappa r))/kappa for electron-nucleus for $J_{en}$
END_DOC
integer :: i, j
do j = 1, nnuc
do i = 1, nelec
rescale_en(i, j) = (1.d0 - dexp(-kappa * elnuc_dist(i, j))) * kappa_inv
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, rescale_een_e, (nelec, nelec, 0:ncord)]
implicit none
BEGIN_DOC
! R = exp(-kappa r) for electron-electron for $J_{een}$
END_DOC
integer :: i, j, l
double precision :: kappa_l
do l = 0, ncord
kappa_l = -dble(l) * kappa
do j = 1, nelec
do i = 1, nelec
rescale_een_e(i, j, l) = kappa_l * elec_dist(i, j)
enddo
enddo
enddo
rescale_een_e = dexp(rescale_een_e)
do l = 0, ncord
do j = 1, nelec
rescale_een_e(j, j, l) = 0.d0
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, rescale_een_n, (nelec, nnuc, 0:ncord)]
implicit none
BEGIN_DOC
! R = exp(-kappa r) for electron-electron for $J_{een}$
END_DOC
integer :: i, a, l
double precision :: kappa_l
do l = 0, ncord
kappa_l = - dble(l) * kappa
do a = 1, nnuc
do i = 1, nelec
rescale_een_n(i, a, l) = kappa_l * elnuc_dist(i, a)
enddo
enddo
enddo
rescale_een_n = dexp(rescale_een_n)
END_PROVIDER
BEGIN_PROVIDER [double precision, rescale_een_n_deriv_e, (4, nelec, nnuc, 0:ncord)]
implicit none
BEGIN_DOC
! Derivative of the scaled distance J_{een} wrt R_{ia}
END_DOC
integer :: i, ii, j, l, a
double precision :: kappa_l
do l = 0, ncord
kappa_l = - dble(l) * kappa
do a = 1, nnuc
do i = 1, nelec
! r'(x) \lor r''(x)
do ii = 1, 4
rescale_een_n_deriv_e(ii, i, a, l) = &
kappa_l * elnuc_dist_deriv_e(ii, i, a)
!print *, "pp", ii, i, a, elnuc_dist_deriv_e(ii, i, a)
enddo
! \left(r''(x)+r'(x)^2\right)
rescale_een_n_deriv_e(4, i, a, l) = rescale_een_n_deriv_e(4, i, a, l) + &
rescale_een_n_deriv_e(1, i, a, l) * rescale_een_n_deriv_e(1, i, a, l) + &
rescale_een_n_deriv_e(2, i, a, l) * rescale_een_n_deriv_e(2, i, a, l) + &
rescale_een_n_deriv_e(3, i, a, l) * rescale_een_n_deriv_e(3, i, a, l)
! \times e^{r(x)}
do ii = 1, 4
rescale_een_n_deriv_e(ii, i, a, l) = &
rescale_een_n_deriv_e(ii, i, a, l) * rescale_een_n(i, a, l)
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, elnuc_dist_deriv_e, (4, nelec, nnuc)]
BEGIN_DOC
! Derivative of R_{ia} wrt x
! Dimensions 1-3 : dx, dy, dz
! Dimension 4 : d2x + d2y + d2z
END_DOC
implicit none
integer :: i, ii, a
double precision :: ria_inv, lap
do a = 1, nnuc
do i = 1, nelec
ria_inv = 1.0d0 / elnuc_dist(i, a)
lap = 0.0d0
do ii = 1, 3
! \frac{x-x0}{\sqrt{c+(x-x0)^2}}
elnuc_dist_deriv_e(ii, i, a) = (elec_coord(i, ii) - nuc_coord(a, ii)) * ria_inv
! 1 / \sqrt{c+(x-x0)^2} - (x-x0)^2 /\left(c+(x-x0)^2\right)^{3/2}
lap = lap + ria_inv - elnuc_dist_deriv_e(ii, i, a) * elnuc_dist_deriv_e(ii, i, a) * ria_inv
end do
elnuc_dist_deriv_e(4, i, a) = lap
end do
end do
END_PROVIDER
BEGIN_PROVIDER [double precision, rescale_een_e_deriv_e, (4, nelec, nelec, 0:ncord)]
BEGIN_DOC
! Derivative of the scaled distance J_{een} wrt R_{ia}
END_DOC
implicit none
integer :: i, ii, j, l
double precision :: kappa_l
do l = 0, ncord
kappa_l = - dble(l) * kappa
do j = 1, nelec
do i = 1, nelec
! r'(x) \lor r''(x)
do ii = 1, 4
rescale_een_e_deriv_e(ii, i, j, l) = &
kappa_l * elec_dist_deriv_e(ii, i, j)
enddo
! \left(r''(x)+r'(x)^2\right)
rescale_een_e_deriv_e(4, i, j, l) = rescale_een_e_deriv_e(4, i, j, l) + &
rescale_een_e_deriv_e(1, i, j, l) * rescale_een_e_deriv_e(1, i, j, l) + &
rescale_een_e_deriv_e(2, i, j, l) * rescale_een_e_deriv_e(2, i, j, l) + &
rescale_een_e_deriv_e(3, i, j, l) * rescale_een_e_deriv_e(3, i, j, l)
! \times e^{r(x)}
do ii = 1, 4
rescale_een_e_deriv_e(ii, i, j, l) = &
rescale_een_e_deriv_e(ii, i, j, l) * rescale_een_e(i, j, l)
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, elec_dist_deriv_e, (4, nelec, nelec)]
BEGIN_DOC
! Derivative of R_{ij} wrt x
! Dimensions 1-3 : dx, dy, dz
! Dimension 4 : d2x + d2y + d2z
END_DOC
implicit none
integer :: i, ii, j
double precision :: rij_inv, lap
do j = 1, nelec
do i = 1, nelec
rij_inv = sign(1.0d0, dble(i - j)) / elec_dist(i, j)
lap = 0.0d0
do ii = 1, 3
! \frac{x-x0}{\sqrt{c+(x-x0)^2}}
elec_dist_deriv_e(ii, i, j) = (elec_coord(i, ii) - elec_coord(j, ii)) * rij_inv
! 1 / \sqrt{c+(x-x0)^2} - (x-x0)^2 /\left(c+(x-x0)^2\right)^{3/2}
lap = lap + rij_inv - elec_dist_deriv_e(ii, i, j) * elec_dist_deriv_e(ii, i, j) * rij_inv
end do
elec_dist_deriv_e(4, i, j) = lap
elec_dist_deriv_e(:, i, i) = 0.0d0
end do
end do
END_PROVIDER