BEGIN_PROVIDER [double precision, factor_een] implicit none BEGIN_DOC ! Electron-electron nucleus contribution to Jastrow factor END_DOC integer :: i, j, alpha, p, k, l, lmax, cidx double precision :: x, y, z, t, c_inv, u, a, b, a2, b2, c, t0 PROVIDE cord_vect factor_een = 0.0d0 cidx = 0 do alpha = 1, nnuc do j = 1, nelec b = rescale_een_n(j, alpha) do i = 1, nelec u = rescale_een_e(i, j) a = rescale_een_n(i, alpha) a2 = a * a b2 = b * b c = rescale_een_n(i, alpha) * rescale_een_n(j, alpha) c_inv = 1.0d0 / c do p = 2, ncord x = 1.0d0 do k = 0, p - 1 if ( k /= 0 ) then lmax = p - k else lmax = p - k - 2 end if t = x do l = 1, rshift(p - k, 1) t = t * c end do ! We have suppressed this from the following loop: ! if ( iand(p - k - l, 1) == 0 ) then ! ! Start from l=0 when p-k is even ! Start from l=1 when p-k is odd if (iand(p - k, 1) == 0) then y = 1.0d0 z = 1.0d0 else y = a z = b endif do l = iand(p - k, 1), lmax, 2 ! factor_een = factor_een + cord_vect(l, k, p, alpha) * (y + z) * t ! cidx = l + (ncord + 1) * k + (ncord + 1) * (ncord + 1) * p + & ! (ncord + 1) * (ncord + 1) * ncord * alpha ! here I try to use the flattened version of the array cidx = l + 6 * k + 6 * 6 * p + 6 * 6 * 5 * alpha print *, cidx factor_een = factor_een + cord_vect(cidx) * (y + z) * t t = t * c_inv y = y * a2 z = z * b2 end do x = x * u end do end do end do end do end do factor_een = 0.5d0 * factor_een END_PROVIDER