mirror of
https://github.com/TREX-CoE/irpjast.git
synced 2024-11-03 20:54:10 +01:00
Jee derivatives full (To be tested)
This commit is contained in:
parent
a1da70a829
commit
c8dd05f555
6
Makefile
6
Makefile
@ -1,8 +1,8 @@
|
||||
IRPF90 = irpf90 --codelet=factor_een:100000
|
||||
IRPF90 = irpf90 #-a -d
|
||||
FC = gfortran
|
||||
FCFLAGS= -O2 -march=native -ffree-line-length-none -I .
|
||||
FCFLAGS= -O2 -ffree-line-length-none -I .
|
||||
NINJA = ninja
|
||||
ARCHIVE= ar crs
|
||||
AR = ar
|
||||
RANLIB = ranlib
|
||||
|
||||
SRC=
|
||||
|
29
codelet_factor_een.f
Normal file
29
codelet_factor_een.f
Normal file
@ -0,0 +1,29 @@
|
||||
|
||||
program codelet_factor_een
|
||||
implicit none
|
||||
integer :: i
|
||||
double precision :: ticks_0, ticks_1, cpu_0, cpu_1
|
||||
integer, parameter :: irp_imax = 100000
|
||||
|
||||
|
||||
|
||||
call provide_factor_een
|
||||
|
||||
double precision :: irp_rdtsc
|
||||
|
||||
call cpu_time(cpu_0)
|
||||
ticks_0 = irp_rdtsc()
|
||||
do i=1,irp_imax
|
||||
call bld_factor_een
|
||||
enddo
|
||||
ticks_1 = irp_rdtsc()
|
||||
call cpu_time(cpu_1)
|
||||
print *, 'factor_een'
|
||||
print *, '-----------'
|
||||
print *, 'Cycles:'
|
||||
print *, (ticks_1-ticks_0)/dble(irp_imax)
|
||||
print *, 'Seconds:'
|
||||
print *, (cpu_1-cpu_0)/dble(irp_imax)
|
||||
end
|
||||
|
||||
|
172
el_nuc_el.irp.f
172
el_nuc_el.irp.f
@ -1,120 +1,112 @@
|
||||
BEGIN_PROVIDER [ double precision, factor_een ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
!
|
||||
! ElectronE-electron-nuclei contribution to Jastrow factor
|
||||
END_DOC
|
||||
integer :: i,j,a,p,k,l,lmax,m
|
||||
integer :: i, j, a, p, k, l, lmax, m
|
||||
double precision :: riam, rjam_cn, rial, rjal, rijk
|
||||
double precision :: cn
|
||||
|
||||
factor_een = 0.0d0
|
||||
|
||||
do p=2,ncord
|
||||
do k=0,p-1
|
||||
if (k /= 0) then
|
||||
lmax = p-k
|
||||
else
|
||||
lmax = p-k-2
|
||||
endif
|
||||
|
||||
do l=0,lmax
|
||||
if ( iand(p-k-l,1) == 1) then
|
||||
cycle
|
||||
do p = 2, ncord
|
||||
do k = 0, p - 1
|
||||
if (k /= 0) then
|
||||
lmax = p - k
|
||||
else
|
||||
lmax = p - k - 2
|
||||
endif
|
||||
m = (p-k-l)/2
|
||||
|
||||
do a=1, nnuc
|
||||
cn = cord_vect_lkp(l,k,p,typenuc_arr(a))
|
||||
do j=1, nelec
|
||||
rjal = rescale_een_n(j,a,l)
|
||||
rjam_cn = rescale_een_n(j,a,m) * cn
|
||||
do i=1, j-1
|
||||
rial = rescale_een_n(i,a,l)
|
||||
riam = rescale_een_n(i,a,m)
|
||||
rijk = rescale_een_e(i,j,k)
|
||||
factor_een = factor_een + &
|
||||
rijk * (rial+rjal) * riam * rjam_cn
|
||||
enddo
|
||||
enddo
|
||||
do l = 0, lmax
|
||||
if ( iand(p - k - l, 1) == 1) cycle
|
||||
m = (p - k - l) / 2
|
||||
do a = 1, nnuc
|
||||
cn = cord_vect_lkp(l, k, p, typenuc_arr(a))
|
||||
do j = 1, nelec
|
||||
rjal = rescale_een_n(j, a, l)
|
||||
rjam_cn = rescale_een_n(j, a, m) * cn
|
||||
do i = 1, j - 1
|
||||
rial = rescale_een_n(i, a, l)
|
||||
riam = rescale_een_n(i, a, m)
|
||||
rijk = rescale_een_e(i, j, k)
|
||||
factor_een = factor_een + &
|
||||
rijk * (rial + rjal) * riam * rjam_cn
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, factor_een_deriv_e, (4,nelec) ]
|
||||
BEGIN_PROVIDER [ double precision, factor_een_deriv_e, (4, nelec) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! dimensions 1-3 : dx,dy,dz
|
||||
!
|
||||
! Rdimension 4 : d2x + d2y + d2z
|
||||
! Dimensions 1-3 : dx, dy, dz
|
||||
! Dimension 4 : d2x + d2y + d2z
|
||||
END_DOC
|
||||
integer :: i,j,a,p,k,l,lmax,m
|
||||
integer :: i, ii, j, a, p, k, l, lmax, m
|
||||
double precision :: riam, rjam_cn, rial, rjal, rijk
|
||||
double precision, dimension(4) :: driam, drjam_cn, drial, drjal, drijk
|
||||
double precision :: cn, v1, v2, l1, l2, d1, d2
|
||||
double precision, dimension(4) :: driam, drjam_cn, drial, drjal, drijk, x
|
||||
double precision :: cn, v1, v2, d1, d2, lap
|
||||
|
||||
factor_een_deriv_e = 0.0d0
|
||||
|
||||
do p=2,ncord
|
||||
do k=0,p-1
|
||||
if (k /= 0) then
|
||||
lmax = p-k
|
||||
else
|
||||
lmax = p-k-2
|
||||
endif
|
||||
|
||||
do l=0,lmax
|
||||
if ( iand(p-k-l,1) == 1) then
|
||||
cycle
|
||||
do p = 2, ncord
|
||||
do k = 0 , p - 1
|
||||
if (k /= 0) then
|
||||
lmax = p - k
|
||||
else
|
||||
lmax = p - k - 2
|
||||
endif
|
||||
m = (p-k-l)/2
|
||||
|
||||
do a=1, nnuc
|
||||
cn = cord_vect_lkp(l,k,p,typenuc_arr(a))
|
||||
do j=1, nelec
|
||||
rjal = rescale_een_n(j,a,l)
|
||||
rjam_cn = rescale_een_n(j,a,m) * cn
|
||||
do ii=1,4
|
||||
drjal(ii) = rescale_een_n_deriv_e(ii,j,a,l)
|
||||
drjam_cn(ii) = rescale_een_n_deriv_e(ii,j,a,m) * cn
|
||||
enddo
|
||||
factor_een_deriv_e(:,j) = 0.d0
|
||||
do i=1, nelec
|
||||
rial = rescale_een_n(i,a,l)
|
||||
riam = rescale_een_n(i,a,m)
|
||||
rijk = rescale_een_e(i,j,k)
|
||||
do ii=1,4
|
||||
drijk(ii) = rescale_een_e_deriv_e(ii,i,j,k)
|
||||
do l = 0, lmax
|
||||
if ( iand(p - k - l, 1) == 1) cycle
|
||||
m = (p - k - l) / 2
|
||||
|
||||
do a = 1, nnuc
|
||||
cn = cord_vect_lkp(l, k, p, typenuc_arr(a))
|
||||
|
||||
do j = 1, nelec
|
||||
factor_een_deriv_e(:, j) = 0.d0
|
||||
rjal = rescale_een_n(j, a, l)
|
||||
rjam_cn = rescale_een_n(j, a, m) * cn
|
||||
|
||||
do ii = 1, 4
|
||||
drjal(ii) = rescale_een_n_deriv_e(ii, j, a, l)
|
||||
drjam_cn(ii) = rescale_een_n_deriv_e(ii, j, a, m) * cn
|
||||
enddo
|
||||
|
||||
do i = 1, nelec
|
||||
rial = rescale_een_n(i, a, l)
|
||||
riam = rescale_een_n(i, a, m)
|
||||
rijk = rescale_een_e(i, j, k)
|
||||
|
||||
do ii = 1, 4
|
||||
drijk(ii) = rescale_een_e_deriv_e(ii, i, j, k)
|
||||
enddo
|
||||
|
||||
lap = 0.0d0
|
||||
x(1:3) = 0.0d0
|
||||
x(4) = 2.0d0
|
||||
v1 = rijk * (rial + rjal)
|
||||
v2 = rjam_cn * riam
|
||||
|
||||
do ii = 1, 4
|
||||
d1 = drijk(ii) * (rial + rjal) + rijk * (rial + drjal(ii))
|
||||
d2 = drjam_cn(ii) * riam
|
||||
factor_een_deriv_e(ii, j) = factor_een_deriv_e(ii, j) + &
|
||||
v1 * d2 + d1 * v2 + x(ii) * lap
|
||||
lap = lap + d1 * d2
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
l1 = 0.d0
|
||||
l2 = 0.d0
|
||||
x(1:3) = 0.d0
|
||||
x(4) = 2.d0
|
||||
do ii=1,4
|
||||
v1 = rijk * (rial+rjal)
|
||||
v2 = rjam_cn * riam
|
||||
|
||||
d1 = drijk(ii) * (rial+rjal) + rijk * (rial+drjal(ii))
|
||||
d2 = drjam_cn(ii) * riam
|
||||
|
||||
l1 = l1 + drijk(ii) * (rial+drjal(ii))
|
||||
l2 = l2 + drjam_cn(ii) * riam
|
||||
|
||||
factor_een_deriv_e(ii,j) = factor_een_deriv_e(ii,j) + &
|
||||
v1 * d2 + d1 * v2 + x(ii) * (l1 + l2)
|
||||
enddo
|
||||
factor_een_deriv_e(ii,j) = factor_een_deriv_e(ii,j) + &
|
||||
v1 * d2 + d1 * v2
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
factor_een_deriv_e = 0.5d0 * factor_een_deriv_e
|
||||
|
||||
END_PROVIDER
|
||||
|
BIN
irp_rdtsc.o
Normal file
BIN
irp_rdtsc.o
Normal file
Binary file not shown.
@ -7,11 +7,8 @@ BEGIN_PROVIDER [ double precision, jastrow_full ]
|
||||
|
||||
print *, "J_ee = ", factor_ee
|
||||
print *, "J_en = ", factor_en
|
||||
print *, "J_enn_naive = ", factor_een_naive
|
||||
print *, "J_een = ", factor_een
|
||||
print *, "J = J_ee + J_en + J_een = ", factor_ee + factor_en + factor_een
|
||||
print *, "J = J_ee + J_en + J_een_naive = ", factor_ee + factor_en + factor_een_naive
|
||||
!print *, "J_enn_prog = ", factor_een_prog
|
||||
|
||||
jastrow_full = dexp(factor_ee + factor_en + factor_een)
|
||||
|
||||
|
@ -11,7 +11,7 @@ BEGIN_PROVIDER [ integer, typenuc ]
|
||||
&BEGIN_PROVIDER [integer, typenuc_arr, (nnuc)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of nuclei
|
||||
! Type of the nuclei
|
||||
END_DOC
|
||||
typenuc = 1
|
||||
typenuc_arr = (/1, 1/)
|
||||
|
14
orders.irp.f
14
orders.irp.f
@ -73,24 +73,24 @@ END_PROVIDER
|
||||
BEGIN_PROVIDER [ double precision, cord_vect_lkp, (0:ncord-1, 0:ncord-1, 2:ncord, typenuc) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Creates c-tensor with right order of the indexes p, k, l
|
||||
END_DOC
|
||||
integer :: alpha, l,k,p,lmax,cindex
|
||||
integer :: alpha, l, k, p, lmax, cindex
|
||||
|
||||
cord_vect_lkp = 0.d0
|
||||
cord_vect_lkp = 0.0d0
|
||||
cindex = 0
|
||||
do alpha=1,typenuc
|
||||
do alpha = 1, typenuc
|
||||
do p = 2, ncord
|
||||
do k = p-1, 0, -1
|
||||
do k = p - 1, 0, -1
|
||||
if ( k /= 0 ) then
|
||||
lmax = p - k
|
||||
else
|
||||
lmax = p - k - 2
|
||||
end if
|
||||
do l = lmax, 0, -1
|
||||
if (iand(p-k-l,1) == 1) cycle
|
||||
if (iand(p - k - l, 1) == 1) cycle
|
||||
cindex = cindex + 1
|
||||
cord_vect_lkp(l,k,p,alpha) = cord_vect(cindex, alpha)
|
||||
cord_vect_lkp(l, k, p, alpha) = cord_vect(cindex, alpha)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
187
rescale.irp.f
187
rescale.irp.f
@ -22,9 +22,9 @@ BEGIN_PROVIDER [ double precision, rescale_ee, (nelec, nelec) ]
|
||||
integer :: i, j
|
||||
|
||||
do j = 1, nelec
|
||||
do i = 1, nelec
|
||||
rescale_ee(i, j) = (1.0d0 - dexp(-kappa * elec_dist(i, j))) * kappa_inv
|
||||
enddo
|
||||
do i = 1, nelec
|
||||
rescale_ee(i, j) = (1.0d0 - dexp(-kappa * elec_dist(i, j))) * kappa_inv
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
@ -36,9 +36,9 @@ BEGIN_PROVIDER [ double precision, rescale_en, (nelec, nnuc) ]
|
||||
integer :: i, j
|
||||
|
||||
do j = 1, nnuc
|
||||
do i = 1, nelec
|
||||
rescale_en(i, j) = (1.d0 - dexp(-kappa * elnuc_dist(i, j))) * kappa_inv
|
||||
enddo
|
||||
do i = 1, nelec
|
||||
rescale_en(i, j) = (1.d0 - dexp(-kappa * elnuc_dist(i, j))) * kappa_inv
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
@ -50,27 +50,25 @@ BEGIN_PROVIDER [double precision, rescale_een_e, (nelec, nelec, 0:ncord)]
|
||||
integer :: i, j, l
|
||||
double precision :: kappa_l
|
||||
|
||||
do l=0,ncord
|
||||
kappa_l = -dble(l) * kappa
|
||||
do j = 1, nelec
|
||||
do i = 1, nelec
|
||||
rescale_een_e(i, j, l) = kappa_l * elec_dist(i, j)
|
||||
do l = 0, ncord
|
||||
kappa_l = -dble(l) * kappa
|
||||
do j = 1, nelec
|
||||
do i = 1, nelec
|
||||
rescale_een_e(i, j, l) = kappa_l * elec_dist(i, j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
! More efficient to compute the exp of array than to do it in the loops
|
||||
|
||||
rescale_een_e = dexp(rescale_een_e)
|
||||
|
||||
! Later we use a formula looping on i and j=1->j-1. We need to set Rjj=0 to
|
||||
! enable looping of j=1,nelec do l=0,ncord
|
||||
do l=0,ncord
|
||||
do j=1,nelec
|
||||
rescale_een_e(j, j, l) = 0.d0
|
||||
enddo
|
||||
do l = 0, ncord
|
||||
do j = 1, nelec
|
||||
rescale_een_e(j, j, l) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, rescale_een_n, (4, nelec, nnuc, 0:ncord)]
|
||||
BEGIN_PROVIDER [double precision, rescale_een_n, (nelec, nnuc, 0:ncord)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! R = exp(-kappa r) for electron-electron for $J_{een}$
|
||||
@ -78,43 +76,138 @@ BEGIN_PROVIDER [double precision, rescale_een_n, (4, nelec, nnuc, 0:ncord)]
|
||||
integer :: i, j, l
|
||||
double precision :: kappa_l
|
||||
|
||||
do l=0,ncord
|
||||
kappa_l = - dble(l) * kappa
|
||||
do j = 1, nnuc
|
||||
do i = 1, nelec
|
||||
rescale_een_n(i, j, l) = kappa_l * elnuc_dist(i, j)
|
||||
enddo
|
||||
enddo
|
||||
do l = 0, ncord
|
||||
kappa_l = - dble(l) * kappa
|
||||
do j = 1, nnuc
|
||||
do i = 1, nelec
|
||||
rescale_een_n(i, j, l) = kappa_l * elnuc_dist(i, j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
rescale_een_n = dexp(rescale_een_n)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, rescale_een_n_deriv_e, (4,nelec, nnuc, 0:ncord)]
|
||||
BEGIN_PROVIDER [double precision, rescale_een_n_deriv_e, (4, nelec, nnuc, 0:ncord)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! R = exp(-kappa r) for electron-electron for $J_{een}$
|
||||
! Derivative of the scaled distance J_{een} wrt R_{ia}
|
||||
END_DOC
|
||||
integer :: i, j, l
|
||||
integer :: i, ii, j, l, a
|
||||
double precision :: kappa_l
|
||||
|
||||
do l=0,ncord
|
||||
kappa_l = - dble(l) * kappa
|
||||
do j = 1, nnuc
|
||||
do i = 1, nelec
|
||||
do ii=1,4
|
||||
rescale_een_n_deriv_e(ii, i, j, l) = &
|
||||
kappa_l * elnuc_dist_deriv_e(ii,i,j)
|
||||
do l = 0, ncord
|
||||
kappa_l = - dble(l) * kappa
|
||||
do a = 1, nnuc
|
||||
do i = 1, nelec
|
||||
! r'(x) \lor r''(x)
|
||||
do ii = 1, 4
|
||||
rescale_een_n_deriv_e(ii, i, a, l) = &
|
||||
kappa_l * elnuc_dist_deriv_e(ii, i, a)
|
||||
enddo
|
||||
|
||||
! \left(r''(x)+r'(x)^2\right)
|
||||
rescale_een_n_deriv_e(4, i, a, l) = rescale_een_n_deriv_e(4, i, a, l) + &
|
||||
rescale_een_n_deriv_e(1, i, a, l) * rescale_een_n_deriv_e(1, i, a, l) + &
|
||||
rescale_een_n_deriv_e(2, i, a, l) * rescale_een_n_deriv_e(2, i, a, l) + &
|
||||
rescale_een_n_deriv_e(3, i, a, l) * rescale_een_n_deriv_e(3, i, a, l)
|
||||
|
||||
! \times e^{r(x)}
|
||||
do ii = 1, 4
|
||||
rescale_een_n_deriv_e(ii, i, a, l) = &
|
||||
rescale_een_n_deriv_e(ii, i, a, l) * rescale_een_n(i, a, l)
|
||||
enddo
|
||||
enddo
|
||||
rescale_een_n_deriv_e(4, i, j, l) = rescale_een_n_deriv_e(4, i, j, l) + &
|
||||
rescale_een_n_deriv_e(1, i, j, l) * rescale_een_n_deriv_e(1, i, j, l) + &
|
||||
rescale_een_n_deriv_e(2, i, j, l) * rescale_een_n_deriv_e(2, i, j, l) + &
|
||||
rescale_een_n_deriv_e(3, i, j, l) * rescale_een_n_deriv_e(3, i, j, l)
|
||||
do ii=1,4
|
||||
rescale_een_n_deriv_e(ii, i, j, l) = &
|
||||
rescale_een_n_deriv_e(ii,i,j, l) * rescale_een_n(i, j, l)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, elnuc_dist_deriv_e, (4, nelec, nnuc)]
|
||||
BEGIN_DOC
|
||||
! Derivative of R_{ia} wrt x
|
||||
! Dimensions 1-3 : dx, dy, dz
|
||||
! Dimension 4 : d2x + d2y + d2z
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i, ii, a
|
||||
double precision :: ria_inv, lap
|
||||
|
||||
do a = 1, nnuc
|
||||
do i = 1, nelec
|
||||
ria_inv = 1.0d0 / elnuc_dist(i, a)
|
||||
lap = 0.0d0
|
||||
do ii = 1, 3
|
||||
elnuc_dist_deriv_e(ii, i, a) = (elec_coord(i, ii) - nuc_coord(a, ii)) * ria_inv
|
||||
lap = ria_inv - elnuc_dist_deriv_e(ii, i, a) * elnuc_dist_deriv_e(ii, i, a) * ria_inv
|
||||
end do
|
||||
elnuc_dist_deriv_e(4, i, a) = lap
|
||||
end do
|
||||
end do
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, rescale_een_e_deriv_e, (4, nelec, nelec, 0:ncord)]
|
||||
BEGIN_DOC
|
||||
! Derivative of the scaled distance J_{een} wrt R_{ia}
|
||||
END_DOC
|
||||
implicit none
|
||||
|
||||
integer :: i, ii, j, l
|
||||
double precision :: kappa_l
|
||||
|
||||
do l = 0, ncord
|
||||
kappa_l = - dble(l) * kappa
|
||||
do j = 1, nelec
|
||||
do i = 1, nelec
|
||||
! r'(x) \lor r''(x)
|
||||
do ii = 1, 4
|
||||
rescale_een_e_deriv_e(ii, i, j, l) = &
|
||||
kappa_l * elec_dist_deriv_e(ii, i, j)
|
||||
enddo
|
||||
|
||||
! \left(r''(x)+r'(x)^2\right)
|
||||
rescale_een_e_deriv_e(4, i, j, l) = rescale_een_e_deriv_e(4, i, j, l) + &
|
||||
rescale_een_e_deriv_e(1, i, j, l) * rescale_een_e_deriv_e(1, i, j, l) + &
|
||||
rescale_een_e_deriv_e(2, i, j, l) * rescale_een_e_deriv_e(2, i, j, l) + &
|
||||
rescale_een_e_deriv_e(3, i, j, l) * rescale_een_e_deriv_e(3, i, j, l)
|
||||
|
||||
! \times e^{r(x)}
|
||||
do ii = 1, 4
|
||||
rescale_een_e_deriv_e(ii, i, j, l) = &
|
||||
rescale_een_e_deriv_e(ii, i, j, l) * rescale_een_e(i, j, l)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, elec_dist_deriv_e, (4, nelec, nelec)]
|
||||
BEGIN_DOC
|
||||
! Derivative of R_{ij} wrt x
|
||||
! Dimensions 1-3 : dx, dy, dz
|
||||
! Dimension 4 : d2x + d2y + d2z
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i, ii, j
|
||||
double precision :: rij_inv, lap
|
||||
|
||||
do j = 1, nnuc
|
||||
do i = 1, nelec
|
||||
rij_inv = 1.0d0 / elec_dist(i, j)
|
||||
lap = 0.0d0
|
||||
do ii = 1, 3
|
||||
elec_dist_deriv_e(ii, i, j) = (elec_coord(i, ii) - elec_coord(j, ii)) * rij_inv
|
||||
lap = rij_inv - elec_dist_deriv_e(ii, i, j) * elec_dist_deriv_e(ii, i, j) * rij_inv
|
||||
end do
|
||||
elnuc_dist_deriv_e(4, i, j) = lap
|
||||
end do
|
||||
end do
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user