mirror of
https://github.com/TREX-CoE/irpjast.git
synced 2025-05-06 23:34:48 +02:00
Merge branch 'as'
This commit is contained in:
commit
a1da70a829
4
Makefile
4
Makefile
@ -1,6 +1,6 @@
|
||||
IRPF90 = irpf90 #-a -d
|
||||
IRPF90 = irpf90 --codelet=factor_een:100000
|
||||
FC = gfortran
|
||||
FCFLAGS= -O2 -ffree-line-length-none -I .
|
||||
FCFLAGS= -O2 -march=native -ffree-line-length-none -I .
|
||||
NINJA = ninja
|
||||
ARCHIVE= ar crs
|
||||
RANLIB = ranlib
|
||||
|
293
el_nuc_el.irp.f
293
el_nuc_el.irp.f
@ -1,208 +1,121 @@
|
||||
BEGIN_PROVIDER [double precision, factor_een]
|
||||
BEGIN_PROVIDER [ double precision, factor_een ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Electron-electron nucleus contribution to Jastrow factor
|
||||
!
|
||||
END_DOC
|
||||
integer :: i, j, alpha, p, k, l, lmax, cindex
|
||||
double precision :: x, y, z, t, c_inv, u, a, b, a2, b2, c, t0
|
||||
integer :: i,j,a,p,k,l,lmax,m
|
||||
double precision :: riam, rjam_cn, rial, rjal, rijk
|
||||
double precision :: cn
|
||||
|
||||
PROVIDE cord_vect
|
||||
factor_een = 0.0d0
|
||||
|
||||
do alpha = 1, nnuc
|
||||
do j = 1, nelec
|
||||
b = rescale_een_n(j, alpha)
|
||||
do i = 1, nelec
|
||||
u = rescale_een_e(i, j)
|
||||
a = rescale_een_n(i, alpha)
|
||||
a2 = a * a
|
||||
b2 = b * b
|
||||
c = rescale_een_n(i, alpha) * rescale_een_n(j, alpha)
|
||||
c_inv = 1.0d0 / c
|
||||
cindex = 0
|
||||
do p = 2, ncord
|
||||
x = 1.0d0
|
||||
do k = 0, p - 1
|
||||
if ( k /= 0 ) then
|
||||
lmax = p - k
|
||||
else
|
||||
lmax = p - k - 2
|
||||
end if
|
||||
t = x
|
||||
do l = 1, rshift(p - k, 1)
|
||||
t = t * c
|
||||
end do
|
||||
! We have suppressed this from the following loop:
|
||||
! if ( iand(p - k - l, 1) == 0 ) then
|
||||
!
|
||||
! Start from l=0 when p-k is even
|
||||
! Start from l=1 when p-k is odd
|
||||
if (iand(p - k, 1) == 0) then
|
||||
y = 1.0d0
|
||||
z = 1.0d0
|
||||
else
|
||||
y = a
|
||||
z = b
|
||||
endif
|
||||
do l = iand(p - k, 1), lmax, 2
|
||||
! This can be used in case of a flatten cord_vect
|
||||
! cidx = 1 + l + (ncord + 1) * k + (ncord + 1) * (ncord + 1) * (p - 1) + &
|
||||
! (ncord + 1) * (ncord + 1) * ncord * (alpha - 1)
|
||||
cindex = cindex + 1
|
||||
factor_een = factor_een + cord_vect(cindex, typenuc_arr(alpha)) * (y + z) * t
|
||||
t = t * c_inv
|
||||
y = y * a2
|
||||
z = z * b2
|
||||
end do
|
||||
x = x * u
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
do p=2,ncord
|
||||
do k=0,p-1
|
||||
if (k /= 0) then
|
||||
lmax = p-k
|
||||
else
|
||||
lmax = p-k-2
|
||||
endif
|
||||
|
||||
factor_een = 0.5d0 * factor_een
|
||||
do l=0,lmax
|
||||
if ( iand(p-k-l,1) == 1) then
|
||||
cycle
|
||||
endif
|
||||
m = (p-k-l)/2
|
||||
|
||||
do a=1, nnuc
|
||||
cn = cord_vect_lkp(l,k,p,typenuc_arr(a))
|
||||
do j=1, nelec
|
||||
rjal = rescale_een_n(j,a,l)
|
||||
rjam_cn = rescale_een_n(j,a,m) * cn
|
||||
do i=1, j-1
|
||||
rial = rescale_een_n(i,a,l)
|
||||
riam = rescale_een_n(i,a,m)
|
||||
rijk = rescale_een_e(i,j,k)
|
||||
factor_een = factor_een + &
|
||||
rijk * (rial+rjal) * riam * rjam_cn
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, factor_een_naive]
|
||||
BEGIN_PROVIDER [ double precision, factor_een_deriv_e, (4,nelec) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Electron-electron nucleus contribution to Jastrow factor in a naive way
|
||||
! dimensions 1-3 : dx,dy,dz
|
||||
!
|
||||
! Rdimension 4 : d2x + d2y + d2z
|
||||
END_DOC
|
||||
integer :: i, j, alpha, p, k, l, lmax, cindex
|
||||
double precision :: ria, rja, rij
|
||||
integer :: i,j,a,p,k,l,lmax,m
|
||||
double precision :: riam, rjam_cn, rial, rjal, rijk
|
||||
double precision, dimension(4) :: driam, drjam_cn, drial, drjal, drijk
|
||||
double precision :: cn, v1, v2, l1, l2, d1, d2
|
||||
|
||||
PROVIDE cord_vect
|
||||
factor_een_naive = 0.0d0
|
||||
factor_een_deriv_e = 0.0d0
|
||||
|
||||
do alpha = 1, nnuc
|
||||
do j = 2, nelec
|
||||
rja = rescale_een_n(j, alpha)
|
||||
do i = 1, j - 1
|
||||
ria = rescale_een_n(i, alpha)
|
||||
rij = rescale_een_e(i, j)
|
||||
cindex = 0
|
||||
do p = 2, ncord
|
||||
do k = p - 1, 0, -1
|
||||
if ( k /= 0 ) then
|
||||
lmax = p - k
|
||||
else
|
||||
lmax = p - k - 2
|
||||
end if
|
||||
do l = lmax, 0, -1
|
||||
if ( iand(p - k - l, 1) == 0 ) then
|
||||
cindex = cindex + 1
|
||||
factor_een_naive = factor_een_naive + &
|
||||
cord_vect(cindex, typenuc_arr(alpha)) * &
|
||||
rij ** k * (ria ** l + rja ** l) * (ria * rja) ** rshift(p - k - l, 1)
|
||||
!factor_een_naive = factor_een_naive + &
|
||||
! cord_vect(cindex, typenuc_arr(alpha)) * &
|
||||
! rij(i, j, k) * (ria(i, alpha, l) + rja(j, alpha, l)) &
|
||||
! * (ria(i, alpha, l) * rja(j, alpha, l)) ** rshift(p - k - l, 1)
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
do p=2,ncord
|
||||
do k=0,p-1
|
||||
if (k /= 0) then
|
||||
lmax = p-k
|
||||
else
|
||||
lmax = p-k-2
|
||||
endif
|
||||
|
||||
do l=0,lmax
|
||||
if ( iand(p-k-l,1) == 1) then
|
||||
cycle
|
||||
endif
|
||||
m = (p-k-l)/2
|
||||
|
||||
do a=1, nnuc
|
||||
cn = cord_vect_lkp(l,k,p,typenuc_arr(a))
|
||||
do j=1, nelec
|
||||
rjal = rescale_een_n(j,a,l)
|
||||
rjam_cn = rescale_een_n(j,a,m) * cn
|
||||
do ii=1,4
|
||||
drjal(ii) = rescale_een_n_deriv_e(ii,j,a,l)
|
||||
drjam_cn(ii) = rescale_een_n_deriv_e(ii,j,a,m) * cn
|
||||
enddo
|
||||
factor_een_deriv_e(:,j) = 0.d0
|
||||
do i=1, nelec
|
||||
rial = rescale_een_n(i,a,l)
|
||||
riam = rescale_een_n(i,a,m)
|
||||
rijk = rescale_een_e(i,j,k)
|
||||
do ii=1,4
|
||||
drijk(ii) = rescale_een_e_deriv_e(ii,i,j,k)
|
||||
enddo
|
||||
l1 = 0.d0
|
||||
l2 = 0.d0
|
||||
x(1:3) = 0.d0
|
||||
x(4) = 2.d0
|
||||
do ii=1,4
|
||||
v1 = rijk * (rial+rjal)
|
||||
v2 = rjam_cn * riam
|
||||
|
||||
d1 = drijk(ii) * (rial+rjal) + rijk * (rial+drjal(ii))
|
||||
d2 = drjam_cn(ii) * riam
|
||||
|
||||
l1 = l1 + drijk(ii) * (rial+drjal(ii))
|
||||
l2 = l2 + drjam_cn(ii) * riam
|
||||
|
||||
factor_een_deriv_e(ii,j) = factor_een_deriv_e(ii,j) + &
|
||||
v1 * d2 + d1 * v2 + x(ii) * (l1 + l2)
|
||||
enddo
|
||||
factor_een_deriv_e(ii,j) = factor_een_deriv_e(ii,j) + &
|
||||
v1 * d2 + d1 * v2
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
factor_een_deriv_e = 0.5d0 * factor_een_deriv_e
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
!BEGIN_PROVIDER [double precision, factor_een_prog]
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! Electron-electron nucleus contribution to Jastrow factor in a naive way
|
||||
! END_DOC
|
||||
! integer :: alpha, i, j, p, k, l, lmax, m, cindex
|
||||
! double precision :: ria, rja, rij, rij_inv
|
||||
! double precision :: c, c_inv, t, x, y, z ! Placeholders for optimization
|
||||
!
|
||||
! PROVIDE cord_vect
|
||||
! factor_een_prog = 0.0d0
|
||||
!
|
||||
! do alpha = 1, nnuc
|
||||
! do j = 2, nelec
|
||||
! rja = rescale_een_n(j, alpha)
|
||||
! do i = 1, j - 1
|
||||
! ria = rescale_een_n(i, alpha)
|
||||
! rij = rescale_een_e(i, j)
|
||||
! rij_inv = 1.0d0 / (rij * rij)
|
||||
! c = ria * rja
|
||||
! c_inv = 1.0d0 / c
|
||||
! cindex = 0
|
||||
! do p = 2, ncord
|
||||
!
|
||||
! x = 1.0d0
|
||||
! do l = 1, p
|
||||
! x = x * rij
|
||||
! end do
|
||||
!
|
||||
! do k = p - 1, 0, -1
|
||||
! if ( k /= 0 ) then
|
||||
! lmax = p - k
|
||||
! else
|
||||
! lmax = p - k - 2
|
||||
! end if
|
||||
!
|
||||
! t = 1.0d0
|
||||
! do l = 1, rshift(p - k, 1)
|
||||
! t = t * c
|
||||
! end do
|
||||
!
|
||||
! do l = lmax, iand(p - k, 1), -2
|
||||
! cindex = cindex + 1
|
||||
! factor_een_prog = factor_een_prog + &
|
||||
! cord_vect(cindex, typenuc_arr(alpha)) * &
|
||||
! x * (ria ** l + rja ** l) * t
|
||||
! t = t * c_inv
|
||||
! x = x * rij_inv
|
||||
! end do
|
||||
!
|
||||
! end do
|
||||
! end do
|
||||
! end do
|
||||
! end do
|
||||
! end do
|
||||
!
|
||||
!END_PROVIDER
|
||||
|
||||
!BEGIN_PROVIDER [double precision, rij, (nelec, nelec, ncord)]
|
||||
!&BEGIN_PROVIDER [double precision, ria, (nelec, nnuc, ncord)]
|
||||
!&BEGIN_PROVIDER [double precision, rja, (nelec, nnuc, ncord)]
|
||||
! BEGIN_DOC
|
||||
! ! Tables with powers
|
||||
! END_DOC
|
||||
! integer :: i, j, k, alpha
|
||||
! double precision :: x, y, z
|
||||
!
|
||||
! rij(:, :, :) = 0.0d0
|
||||
! ria(:, :, :) = 0.0d0
|
||||
! rja(:, :, :) = 0.0d0
|
||||
!
|
||||
! implicit none
|
||||
! do alpha = 1, nnuc
|
||||
! do j = 2, nelec
|
||||
! z = 1.0d0
|
||||
! do k = 1, ncord
|
||||
! rja(j, alpha, k) = z
|
||||
! z = z * rescale_een_n(j, alpha)
|
||||
! end do
|
||||
! do i = 1, j - 1
|
||||
! y = 1.0d0
|
||||
! do k = 1, ncord
|
||||
! ria(i, alpha, k) = y
|
||||
! y = y * rescale_een_n(i, alpha)
|
||||
! end do
|
||||
! x = 1.0d0
|
||||
! do k = 1, ncord
|
||||
! rij(i, j, k) = x
|
||||
! x = x * rescale_een_e(i, j)
|
||||
! end do
|
||||
! end do
|
||||
! end do
|
||||
! end do
|
||||
!
|
||||
!END_PROVIDER
|
||||
|
||||
|
28
orders.irp.f
28
orders.irp.f
@ -69,3 +69,31 @@ BEGIN_PROVIDER [double precision, aord_vect, (naord + 1, typenuc)]
|
||||
close(fu)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, cord_vect_lkp, (0:ncord-1, 0:ncord-1, 2:ncord, typenuc) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
!
|
||||
END_DOC
|
||||
integer :: alpha, l,k,p,lmax,cindex
|
||||
|
||||
cord_vect_lkp = 0.d0
|
||||
cindex = 0
|
||||
do alpha=1,typenuc
|
||||
do p = 2, ncord
|
||||
do k = p-1, 0, -1
|
||||
if ( k /= 0 ) then
|
||||
lmax = p - k
|
||||
else
|
||||
lmax = p - k - 2
|
||||
end if
|
||||
do l = lmax, 0, -1
|
||||
if (iand(p-k-l,1) == 1) cycle
|
||||
cindex = cindex + 1
|
||||
cord_vect_lkp(l,k,p,alpha) = cord_vect(cindex, alpha)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -42,30 +42,79 @@ BEGIN_PROVIDER [ double precision, rescale_en, (nelec, nnuc) ]
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, rescale_een_e, (nelec, nelec)]
|
||||
BEGIN_PROVIDER [double precision, rescale_een_e, (nelec, nelec, 0:ncord)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! R = exp(-kappa r) for electron-electron for $J_{een}$
|
||||
END_DOC
|
||||
integer :: i, j
|
||||
integer :: i, j, l
|
||||
double precision :: kappa_l
|
||||
|
||||
do j = 1, nelec
|
||||
do i = 1, nelec
|
||||
rescale_een_e(i, j) = dexp(-kappa * elec_dist(i, j))
|
||||
do l=0,ncord
|
||||
kappa_l = -dble(l) * kappa
|
||||
do j = 1, nelec
|
||||
do i = 1, nelec
|
||||
rescale_een_e(i, j, l) = kappa_l * elec_dist(i, j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
! More efficient to compute the exp of array than to do it in the loops
|
||||
rescale_een_e = dexp(rescale_een_e)
|
||||
|
||||
! Later we use a formula looping on i and j=1->j-1. We need to set Rjj=0 to
|
||||
! enable looping of j=1,nelec do l=0,ncord
|
||||
do l=0,ncord
|
||||
do j=1,nelec
|
||||
rescale_een_e(j, j, l) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, rescale_een_n, (nelec, nnuc)]
|
||||
BEGIN_PROVIDER [double precision, rescale_een_n, (4, nelec, nnuc, 0:ncord)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! R = exp(-kappa r) for electron-electron for $J_{een}$
|
||||
END_DOC
|
||||
integer :: i, j
|
||||
integer :: i, j, l
|
||||
double precision :: kappa_l
|
||||
|
||||
do j = 1, nnuc
|
||||
do i = 1, nelec
|
||||
rescale_een_n(i, j) = dexp(-kappa * elnuc_dist(i, j))
|
||||
do l=0,ncord
|
||||
kappa_l = - dble(l) * kappa
|
||||
do j = 1, nnuc
|
||||
do i = 1, nelec
|
||||
rescale_een_n(i, j, l) = kappa_l * elnuc_dist(i, j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
rescale_een_n = dexp(rescale_een_n)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, rescale_een_n_deriv_e, (4,nelec, nnuc, 0:ncord)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! R = exp(-kappa r) for electron-electron for $J_{een}$
|
||||
END_DOC
|
||||
integer :: i, j, l
|
||||
double precision :: kappa_l
|
||||
|
||||
do l=0,ncord
|
||||
kappa_l = - dble(l) * kappa
|
||||
do j = 1, nnuc
|
||||
do i = 1, nelec
|
||||
do ii=1,4
|
||||
rescale_een_n_deriv_e(ii, i, j, l) = &
|
||||
kappa_l * elnuc_dist_deriv_e(ii,i,j)
|
||||
enddo
|
||||
rescale_een_n_deriv_e(4, i, j, l) = rescale_een_n_deriv_e(4, i, j, l) + &
|
||||
rescale_een_n_deriv_e(1, i, j, l) * rescale_een_n_deriv_e(1, i, j, l) + &
|
||||
rescale_een_n_deriv_e(2, i, j, l) * rescale_een_n_deriv_e(2, i, j, l) + &
|
||||
rescale_een_n_deriv_e(3, i, j, l) * rescale_een_n_deriv_e(3, i, j, l)
|
||||
do ii=1,4
|
||||
rescale_een_n_deriv_e(ii, i, j, l) = &
|
||||
rescale_een_n_deriv_e(ii,i,j, l) * rescale_een_n(i, j, l)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user