1
0
mirror of https://github.com/TREX-CoE/irpjast.git synced 2024-07-22 18:57:41 +02:00

Merge branch 'as'

This commit is contained in:
Anthony Scemama 2020-12-10 17:29:46 +01:00
commit a1da70a829
5 changed files with 193 additions and 203 deletions

View File

@ -1,6 +1,6 @@
IRPF90 = irpf90 #-a -d
IRPF90 = irpf90 --codelet=factor_een:100000
FC = gfortran
FCFLAGS= -O2 -ffree-line-length-none -I .
FCFLAGS= -O2 -march=native -ffree-line-length-none -I .
NINJA = ninja
ARCHIVE= ar crs
RANLIB = ranlib

View File

@ -1,208 +1,121 @@
BEGIN_PROVIDER [double precision, factor_een]
BEGIN_PROVIDER [ double precision, factor_een ]
implicit none
BEGIN_DOC
! Electron-electron nucleus contribution to Jastrow factor
!
END_DOC
integer :: i, j, alpha, p, k, l, lmax, cindex
double precision :: x, y, z, t, c_inv, u, a, b, a2, b2, c, t0
integer :: i,j,a,p,k,l,lmax,m
double precision :: riam, rjam_cn, rial, rjal, rijk
double precision :: cn
PROVIDE cord_vect
factor_een = 0.0d0
do alpha = 1, nnuc
do j = 1, nelec
b = rescale_een_n(j, alpha)
do i = 1, nelec
u = rescale_een_e(i, j)
a = rescale_een_n(i, alpha)
a2 = a * a
b2 = b * b
c = rescale_een_n(i, alpha) * rescale_een_n(j, alpha)
c_inv = 1.0d0 / c
cindex = 0
do p = 2, ncord
x = 1.0d0
do k = 0, p - 1
if ( k /= 0 ) then
lmax = p - k
else
lmax = p - k - 2
end if
t = x
do l = 1, rshift(p - k, 1)
t = t * c
end do
! We have suppressed this from the following loop:
! if ( iand(p - k - l, 1) == 0 ) then
!
! Start from l=0 when p-k is even
! Start from l=1 when p-k is odd
if (iand(p - k, 1) == 0) then
y = 1.0d0
z = 1.0d0
else
y = a
z = b
endif
do l = iand(p - k, 1), lmax, 2
! This can be used in case of a flatten cord_vect
! cidx = 1 + l + (ncord + 1) * k + (ncord + 1) * (ncord + 1) * (p - 1) + &
! (ncord + 1) * (ncord + 1) * ncord * (alpha - 1)
cindex = cindex + 1
factor_een = factor_een + cord_vect(cindex, typenuc_arr(alpha)) * (y + z) * t
t = t * c_inv
y = y * a2
z = z * b2
end do
x = x * u
end do
end do
end do
end do
end do
do p=2,ncord
do k=0,p-1
if (k /= 0) then
lmax = p-k
else
lmax = p-k-2
endif
factor_een = 0.5d0 * factor_een
do l=0,lmax
if ( iand(p-k-l,1) == 1) then
cycle
endif
m = (p-k-l)/2
do a=1, nnuc
cn = cord_vect_lkp(l,k,p,typenuc_arr(a))
do j=1, nelec
rjal = rescale_een_n(j,a,l)
rjam_cn = rescale_een_n(j,a,m) * cn
do i=1, j-1
rial = rescale_een_n(i,a,l)
riam = rescale_een_n(i,a,m)
rijk = rescale_een_e(i,j,k)
factor_een = factor_een + &
rijk * (rial+rjal) * riam * rjam_cn
enddo
enddo
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, factor_een_naive]
BEGIN_PROVIDER [ double precision, factor_een_deriv_e, (4,nelec) ]
implicit none
BEGIN_DOC
! Electron-electron nucleus contribution to Jastrow factor in a naive way
! dimensions 1-3 : dx,dy,dz
!
! Rdimension 4 : d2x + d2y + d2z
END_DOC
integer :: i, j, alpha, p, k, l, lmax, cindex
double precision :: ria, rja, rij
integer :: i,j,a,p,k,l,lmax,m
double precision :: riam, rjam_cn, rial, rjal, rijk
double precision, dimension(4) :: driam, drjam_cn, drial, drjal, drijk
double precision :: cn, v1, v2, l1, l2, d1, d2
PROVIDE cord_vect
factor_een_naive = 0.0d0
do alpha = 1, nnuc
do j = 2, nelec
rja = rescale_een_n(j, alpha)
do i = 1, j - 1
ria = rescale_een_n(i, alpha)
rij = rescale_een_e(i, j)
cindex = 0
do p = 2, ncord
do k = p - 1, 0, -1
if ( k /= 0 ) then
lmax = p - k
else
lmax = p - k - 2
end if
do l = lmax, 0, -1
if ( iand(p - k - l, 1) == 0 ) then
cindex = cindex + 1
factor_een_naive = factor_een_naive + &
cord_vect(cindex, typenuc_arr(alpha)) * &
rij ** k * (ria ** l + rja ** l) * (ria * rja) ** rshift(p - k - l, 1)
!factor_een_naive = factor_een_naive + &
! cord_vect(cindex, typenuc_arr(alpha)) * &
! rij(i, j, k) * (ria(i, alpha, l) + rja(j, alpha, l)) &
! * (ria(i, alpha, l) * rja(j, alpha, l)) ** rshift(p - k - l, 1)
end if
end do
end do
end do
end do
end do
end do
factor_een_deriv_e = 0.0d0
do p=2,ncord
do k=0,p-1
if (k /= 0) then
lmax = p-k
else
lmax = p-k-2
endif
do l=0,lmax
if ( iand(p-k-l,1) == 1) then
cycle
endif
m = (p-k-l)/2
do a=1, nnuc
cn = cord_vect_lkp(l,k,p,typenuc_arr(a))
do j=1, nelec
rjal = rescale_een_n(j,a,l)
rjam_cn = rescale_een_n(j,a,m) * cn
do ii=1,4
drjal(ii) = rescale_een_n_deriv_e(ii,j,a,l)
drjam_cn(ii) = rescale_een_n_deriv_e(ii,j,a,m) * cn
enddo
factor_een_deriv_e(:,j) = 0.d0
do i=1, nelec
rial = rescale_een_n(i,a,l)
riam = rescale_een_n(i,a,m)
rijk = rescale_een_e(i,j,k)
do ii=1,4
drijk(ii) = rescale_een_e_deriv_e(ii,i,j,k)
enddo
l1 = 0.d0
l2 = 0.d0
x(1:3) = 0.d0
x(4) = 2.d0
do ii=1,4
v1 = rijk * (rial+rjal)
v2 = rjam_cn * riam
d1 = drijk(ii) * (rial+rjal) + rijk * (rial+drjal(ii))
d2 = drjam_cn(ii) * riam
l1 = l1 + drijk(ii) * (rial+drjal(ii))
l2 = l2 + drjam_cn(ii) * riam
factor_een_deriv_e(ii,j) = factor_een_deriv_e(ii,j) + &
v1 * d2 + d1 * v2 + x(ii) * (l1 + l2)
enddo
factor_een_deriv_e(ii,j) = factor_een_deriv_e(ii,j) + &
v1 * d2 + d1 * v2
enddo
enddo
enddo
enddo
enddo
enddo
factor_een_deriv_e = 0.5d0 * factor_een_deriv_e
END_PROVIDER
!BEGIN_PROVIDER [double precision, factor_een_prog]
! implicit none
! BEGIN_DOC
! ! Electron-electron nucleus contribution to Jastrow factor in a naive way
! END_DOC
! integer :: alpha, i, j, p, k, l, lmax, m, cindex
! double precision :: ria, rja, rij, rij_inv
! double precision :: c, c_inv, t, x, y, z ! Placeholders for optimization
!
! PROVIDE cord_vect
! factor_een_prog = 0.0d0
!
! do alpha = 1, nnuc
! do j = 2, nelec
! rja = rescale_een_n(j, alpha)
! do i = 1, j - 1
! ria = rescale_een_n(i, alpha)
! rij = rescale_een_e(i, j)
! rij_inv = 1.0d0 / (rij * rij)
! c = ria * rja
! c_inv = 1.0d0 / c
! cindex = 0
! do p = 2, ncord
!
! x = 1.0d0
! do l = 1, p
! x = x * rij
! end do
!
! do k = p - 1, 0, -1
! if ( k /= 0 ) then
! lmax = p - k
! else
! lmax = p - k - 2
! end if
!
! t = 1.0d0
! do l = 1, rshift(p - k, 1)
! t = t * c
! end do
!
! do l = lmax, iand(p - k, 1), -2
! cindex = cindex + 1
! factor_een_prog = factor_een_prog + &
! cord_vect(cindex, typenuc_arr(alpha)) * &
! x * (ria ** l + rja ** l) * t
! t = t * c_inv
! x = x * rij_inv
! end do
!
! end do
! end do
! end do
! end do
! end do
!
!END_PROVIDER
!BEGIN_PROVIDER [double precision, rij, (nelec, nelec, ncord)]
!&BEGIN_PROVIDER [double precision, ria, (nelec, nnuc, ncord)]
!&BEGIN_PROVIDER [double precision, rja, (nelec, nnuc, ncord)]
! BEGIN_DOC
! ! Tables with powers
! END_DOC
! integer :: i, j, k, alpha
! double precision :: x, y, z
!
! rij(:, :, :) = 0.0d0
! ria(:, :, :) = 0.0d0
! rja(:, :, :) = 0.0d0
!
! implicit none
! do alpha = 1, nnuc
! do j = 2, nelec
! z = 1.0d0
! do k = 1, ncord
! rja(j, alpha, k) = z
! z = z * rescale_een_n(j, alpha)
! end do
! do i = 1, j - 1
! y = 1.0d0
! do k = 1, ncord
! ria(i, alpha, k) = y
! y = y * rescale_een_n(i, alpha)
! end do
! x = 1.0d0
! do k = 1, ncord
! rij(i, j, k) = x
! x = x * rescale_een_e(i, j)
! end do
! end do
! end do
! end do
!
!END_PROVIDER

BIN
jastrow

Binary file not shown.

View File

@ -69,3 +69,31 @@ BEGIN_PROVIDER [double precision, aord_vect, (naord + 1, typenuc)]
close(fu)
END_PROVIDER
BEGIN_PROVIDER [ double precision, cord_vect_lkp, (0:ncord-1, 0:ncord-1, 2:ncord, typenuc) ]
implicit none
BEGIN_DOC
!
END_DOC
integer :: alpha, l,k,p,lmax,cindex
cord_vect_lkp = 0.d0
cindex = 0
do alpha=1,typenuc
do p = 2, ncord
do k = p-1, 0, -1
if ( k /= 0 ) then
lmax = p - k
else
lmax = p - k - 2
end if
do l = lmax, 0, -1
if (iand(p-k-l,1) == 1) cycle
cindex = cindex + 1
cord_vect_lkp(l,k,p,alpha) = cord_vect(cindex, alpha)
end do
end do
end do
end do
END_PROVIDER

View File

@ -42,30 +42,79 @@ BEGIN_PROVIDER [ double precision, rescale_en, (nelec, nnuc) ]
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, rescale_een_e, (nelec, nelec)]
BEGIN_PROVIDER [double precision, rescale_een_e, (nelec, nelec, 0:ncord)]
implicit none
BEGIN_DOC
! R = exp(-kappa r) for electron-electron for $J_{een}$
END_DOC
integer :: i, j
integer :: i, j, l
double precision :: kappa_l
do j = 1, nelec
do i = 1, nelec
rescale_een_e(i, j) = dexp(-kappa * elec_dist(i, j))
do l=0,ncord
kappa_l = -dble(l) * kappa
do j = 1, nelec
do i = 1, nelec
rescale_een_e(i, j, l) = kappa_l * elec_dist(i, j)
enddo
enddo
enddo
! More efficient to compute the exp of array than to do it in the loops
rescale_een_e = dexp(rescale_een_e)
! Later we use a formula looping on i and j=1->j-1. We need to set Rjj=0 to
! enable looping of j=1,nelec do l=0,ncord
do l=0,ncord
do j=1,nelec
rescale_een_e(j, j, l) = 0.d0
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, rescale_een_n, (nelec, nnuc)]
BEGIN_PROVIDER [double precision, rescale_een_n, (4, nelec, nnuc, 0:ncord)]
implicit none
BEGIN_DOC
! R = exp(-kappa r) for electron-electron for $J_{een}$
END_DOC
integer :: i, j
integer :: i, j, l
double precision :: kappa_l
do j = 1, nnuc
do i = 1, nelec
rescale_een_n(i, j) = dexp(-kappa * elnuc_dist(i, j))
do l=0,ncord
kappa_l = - dble(l) * kappa
do j = 1, nnuc
do i = 1, nelec
rescale_een_n(i, j, l) = kappa_l * elnuc_dist(i, j)
enddo
enddo
enddo
rescale_een_n = dexp(rescale_een_n)
END_PROVIDER
BEGIN_PROVIDER [double precision, rescale_een_n_deriv_e, (4,nelec, nnuc, 0:ncord)]
implicit none
BEGIN_DOC
! R = exp(-kappa r) for electron-electron for $J_{een}$
END_DOC
integer :: i, j, l
double precision :: kappa_l
do l=0,ncord
kappa_l = - dble(l) * kappa
do j = 1, nnuc
do i = 1, nelec
do ii=1,4
rescale_een_n_deriv_e(ii, i, j, l) = &
kappa_l * elnuc_dist_deriv_e(ii,i,j)
enddo
rescale_een_n_deriv_e(4, i, j, l) = rescale_een_n_deriv_e(4, i, j, l) + &
rescale_een_n_deriv_e(1, i, j, l) * rescale_een_n_deriv_e(1, i, j, l) + &
rescale_een_n_deriv_e(2, i, j, l) * rescale_een_n_deriv_e(2, i, j, l) + &
rescale_een_n_deriv_e(3, i, j, l) * rescale_een_n_deriv_e(3, i, j, l)
do ii=1,4
rescale_een_n_deriv_e(ii, i, j, l) = &
rescale_een_n_deriv_e(ii,i,j, l) * rescale_een_n(i, j, l)
enddo
enddo
enddo
enddo
END_PROVIDER