1
0
mirror of https://github.com/TREX-CoE/irpjast.git synced 2024-11-04 13:14:03 +01:00

WIP: Derivatives

This commit is contained in:
Anthony Scemama 2020-12-10 17:21:38 +01:00
parent f783e1c4fd
commit 9a07a3d9e8
5 changed files with 122 additions and 76 deletions

View File

@ -1,4 +1,4 @@
IRPF90 = irpf90 --codelet=factor_een_2:100000 #--codelet=factor_een:10000
IRPF90 = irpf90 --codelet=factor_een:100000
FC = gfortran
FCFLAGS= -O2 -march=native -ffree-line-length-none -I .
NINJA = ninja

View File

@ -1,73 +1,4 @@
BEGIN_PROVIDER [double precision, factor_een]
implicit none
BEGIN_DOC
! Electron-electron nucleus contribution to Jastrow factor
END_DOC
integer :: i, j, alpha, p, k, l, lmax, cindex
double precision :: x, y, z, t, c_inv, u, a, b, a2, b2, c, t0
PROVIDE cord_vect
factor_een = 0.0d0
do alpha = 1, nnuc
do j = 1, nelec
b = rescale_een_n(j, alpha, 1)
do i = 1, nelec
u = rescale_een_e(i, j, 1)
a = rescale_een_n(i, alpha, 1)
a2 = a * a
b2 = b * b
c = rescale_een_n(i, alpha, 1) * rescale_een_n(j, alpha, 1)
c_inv = 1.0d0 / c
cindex = 0
do p = 2, ncord
x = 1.0d0
do k = 0, p - 1
if ( k /= 0 ) then
lmax = p - k
else
lmax = p - k - 2
end if
t = x
do l = 1, rshift(p - k, 1)
t = t * c
end do
! We have suppressed this from the following loop:
! if ( iand(p - k - l, 1) == 0 ) then
!
! Start from l=0 when p-k is even
! Start from l=1 when p-k is odd
if (iand(p - k, 1) == 0) then
y = 1.0d0
z = 1.0d0
else
y = a
z = b
endif
do l = iand(p - k, 1), lmax, 2
! This can be used in case of a flatten cord_vect
! cidx = 1 + l + (ncord + 1) * k + (ncord + 1) * (ncord + 1) * (p - 1) + &
! (ncord + 1) * (ncord + 1) * ncord * (alpha - 1)
cindex = cindex + 1
factor_een = factor_een + cord_vect(cindex, typenuc_arr(alpha)) * (y + z) * t
t = t * c_inv
y = y * a2
z = z * b2
end do
x = x * u
end do
end do
end do
end do
end do
factor_een = 0.5d0 * factor_een
END_PROVIDER
BEGIN_PROVIDER [ double precision, factor_een_2 ]
BEGIN_PROVIDER [ double precision, factor_een ]
implicit none
BEGIN_DOC
!
@ -76,7 +7,7 @@ BEGIN_PROVIDER [ double precision, factor_een_2 ]
double precision :: riam, rjam_cn, rial, rjal, rijk
double precision :: cn
factor_een_2 = 0.0d0
factor_een = 0.0d0
do p=2,ncord
do k=0,p-1
@ -87,7 +18,9 @@ BEGIN_PROVIDER [ double precision, factor_een_2 ]
endif
do l=0,lmax
if ( iand(p-k-l,1) == 1) cycle
if ( iand(p-k-l,1) == 1) then
cycle
endif
m = (p-k-l)/2
do a=1, nnuc
@ -99,7 +32,7 @@ BEGIN_PROVIDER [ double precision, factor_een_2 ]
rial = rescale_een_n(i,a,l)
riam = rescale_een_n(i,a,m)
rijk = rescale_een_e(i,j,k)
factor_een_2 = factor_een_2 + &
factor_een = factor_een + &
rijk * (rial+rjal) * riam * rjam_cn
enddo
enddo
@ -111,3 +44,78 @@ BEGIN_PROVIDER [ double precision, factor_een_2 ]
END_PROVIDER
BEGIN_PROVIDER [ double precision, factor_een_deriv_e, (4,nelec) ]
implicit none
BEGIN_DOC
! dimensions 1-3 : dx,dy,dz
!
! Rdimension 4 : d2x + d2y + d2z
END_DOC
integer :: i,j,a,p,k,l,lmax,m
double precision :: riam, rjam_cn, rial, rjal, rijk
double precision, dimension(4) :: driam, drjam_cn, drial, drjal, drijk
double precision :: cn, v1, v2, l1, l2, d1, d2
factor_een_deriv_e = 0.0d0
do p=2,ncord
do k=0,p-1
if (k /= 0) then
lmax = p-k
else
lmax = p-k-2
endif
do l=0,lmax
if ( iand(p-k-l,1) == 1) then
cycle
endif
m = (p-k-l)/2
do a=1, nnuc
cn = cord_vect_lkp(l,k,p,typenuc_arr(a))
do j=1, nelec
rjal = rescale_een_n(j,a,l)
rjam_cn = rescale_een_n(j,a,m) * cn
do ii=1,4
drjal(ii) = rescale_een_n_deriv_e(ii,j,a,l)
drjam_cn(ii) = rescale_een_n_deriv_e(ii,j,a,m) * cn
enddo
factor_een_deriv_e(:,j) = 0.d0
do i=1, nelec
rial = rescale_een_n(i,a,l)
riam = rescale_een_n(i,a,m)
rijk = rescale_een_e(i,j,k)
do ii=1,4
drijk(ii) = rescale_een_e_deriv_e(ii,i,j,k)
enddo
l1 = 0.d0
l2 = 0.d0
x(1:3) = 0.d0
x(4) = 2.d0
do ii=1,4
v1 = rijk * (rial+rjal)
v2 = rjam_cn * riam
d1 = drijk(ii) * (rial+rjal) + rijk * (rial+drjal(ii))
d2 = drjam_cn(ii) * riam
l1 = l1 + drijk(ii) * (rial+drjal(ii))
l2 = l2 + drjam_cn(ii) * riam
factor_een_deriv_e(ii,j) = factor_een_deriv_e(ii,j) + &
v1 * d2 + d1 * v2 + x(ii) * (l1 + l2)
enddo
factor_een_deriv_e(ii,j) = factor_een_deriv_e(ii,j) + &
v1 * d2 + d1 * v2
enddo
enddo
enddo
enddo
enddo
enddo
factor_een_deriv_e = 0.5d0 * factor_een_deriv_e
END_PROVIDER

BIN
jastrow

Binary file not shown.

View File

@ -3,6 +3,5 @@ program jastrow
print *, 'The total Jastrow factor'
print *, jastrow_full
print *, factor_een
print *, factor_een_2
end program

View File

@ -58,10 +58,19 @@ BEGIN_PROVIDER [double precision, rescale_een_e, (nelec, nelec, 0:ncord)]
enddo
enddo
enddo
! More efficient to compute the exp of array than to do it in the loops
rescale_een_e = dexp(rescale_een_e)
! Later we use a formula looping on i and j=1->j-1. We need to set Rjj=0 to
! enable looping of j=1,nelec do l=0,ncord
do l=0,ncord
do j=1,nelec
rescale_een_e(j, j, l) = 0.d0
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, rescale_een_n, (nelec, nnuc, 0:ncord)]
BEGIN_PROVIDER [double precision, rescale_een_n, (4, nelec, nnuc, 0:ncord)]
implicit none
BEGIN_DOC
! R = exp(-kappa r) for electron-electron for $J_{een}$
@ -79,3 +88,33 @@ BEGIN_PROVIDER [double precision, rescale_een_n, (nelec, nnuc, 0:ncord)]
enddo
rescale_een_n = dexp(rescale_een_n)
END_PROVIDER
BEGIN_PROVIDER [double precision, rescale_een_n_deriv_e, (4,nelec, nnuc, 0:ncord)]
implicit none
BEGIN_DOC
! R = exp(-kappa r) for electron-electron for $J_{een}$
END_DOC
integer :: i, j, l
double precision :: kappa_l
do l=0,ncord
kappa_l = - dble(l) * kappa
do j = 1, nnuc
do i = 1, nelec
do ii=1,4
rescale_een_n_deriv_e(ii, i, j, l) = &
kappa_l * elnuc_dist_deriv_e(ii,i,j)
enddo
rescale_een_n_deriv_e(4, i, j, l) = rescale_een_n_deriv_e(4, i, j, l) + &
rescale_een_n_deriv_e(1, i, j, l) * rescale_een_n_deriv_e(1, i, j, l) + &
rescale_een_n_deriv_e(2, i, j, l) * rescale_een_n_deriv_e(2, i, j, l) + &
rescale_een_n_deriv_e(3, i, j, l) * rescale_een_n_deriv_e(3, i, j, l)
do ii=1,4
rescale_een_n_deriv_e(ii, i, j, l) = &
rescale_een_n_deriv_e(ii,i,j, l) * rescale_een_n(i, j, l)
enddo
enddo
enddo
enddo
END_PROVIDER