1
0
mirror of https://github.com/TREX-CoE/irpjast.git synced 2024-08-25 22:51:50 +02:00
irpjast/el_nuc_el.irp.f

167 lines
5.0 KiB
FortranFixed
Raw Normal View History

BEGIN_PROVIDER [double precision, factor_een]
implicit none
BEGIN_DOC
! Electron-electron nucleus contribution to Jastrow factor
END_DOC
2020-12-08 13:08:23 +01:00
integer :: i, j, alpha, p, k, l, lmax, cindex
2020-12-02 11:25:20 +01:00
double precision :: x, y, z, t, c_inv, u, a, b, a2, b2, c, t0
2020-12-04 13:59:10 +01:00
2020-12-02 15:32:08 +01:00
PROVIDE cord_vect
factor_een = 0.0d0
2020-12-02 10:41:22 +01:00
do alpha = 1, nnuc
do j = 1, nelec
2020-12-02 11:25:20 +01:00
b = rescale_een_n(j, alpha)
do i = 1, nelec
2020-12-04 13:59:10 +01:00
u = rescale_een_e(i, j)
a = rescale_een_n(i, alpha)
a2 = a * a
b2 = b * b
c = rescale_een_n(i, alpha) * rescale_een_n(j, alpha)
c_inv = 1.0d0 / c
2020-12-08 13:08:23 +01:00
cindex = 0
2020-12-04 13:59:10 +01:00
do p = 2, ncord
x = 1.0d0
do k = 0, p - 1
if ( k /= 0 ) then
lmax = p - k
else
lmax = p - k - 2
end if
t = x
do l = 1, rshift(p - k, 1)
t = t * c
end do
! We have suppressed this from the following loop:
! if ( iand(p - k - l, 1) == 0 ) then
!
! Start from l=0 when p-k is even
! Start from l=1 when p-k is odd
if (iand(p - k, 1) == 0) then
y = 1.0d0
z = 1.0d0
else
y = a
z = b
endif
do l = iand(p - k, 1), lmax, 2
2020-12-07 10:55:37 +01:00
! This can be used in case of a flatten cord_vect
! cidx = 1 + l + (ncord + 1) * k + (ncord + 1) * (ncord + 1) * (p - 1) + &
! (ncord + 1) * (ncord + 1) * ncord * (alpha - 1)
2020-12-08 13:08:23 +01:00
cindex = cindex + 1
factor_een = factor_een + cord_vect(cindex, typenuc_arr(alpha)) * (y + z) * t
2020-12-04 13:59:10 +01:00
t = t * c_inv
y = y * a2
z = z * b2
end do
x = x * u
end do
end do
end do
end do
end do
2020-11-25 18:09:13 +01:00
factor_een = 0.5d0 * factor_een
END_PROVIDER
2020-12-09 22:23:19 +01:00
BEGIN_PROVIDER [double precision, factor_een_naive]
implicit none
BEGIN_DOC
! Electron-electron nucleus contribution to Jastrow factor in a naive way
END_DOC
integer :: i, j, alpha, p, k, l, lmax, cindex
double precision :: ria, rja, rij
PROVIDE cord_vect
factor_een_naive = 0.0d0
do alpha = 1, nnuc
do j = 2, nelec
rja = rescale_een_n(j, alpha)
do i = 1, j - 1
ria = rescale_een_n(i, alpha)
rij = rescale_een_e(i, j)
cindex = 0
do p = 2, ncord
do k = p - 1, 0, -1
if ( k /= 0 ) then
lmax = p - k
else
lmax = p - k - 2
end if
do l = lmax, 0, -1
if ( iand(p - k - l, 1) == 0 ) then
cindex = cindex + 1
factor_een_naive = factor_een_naive + &
cord_vect(cindex, typenuc_arr(alpha)) * &
rij ** k * (ria ** l + rja ** l) * (ria * rja) ** rshift(p - k - l, 1)
print *, "a", (ria * rja) ** rshift(p - k - l, 1)
end if
end do
end do
end do
end do
end do
end do
END_PROVIDER
BEGIN_PROVIDER [double precision, factor_een_prog]
implicit none
BEGIN_DOC
! Electron-electron nucleus contribution to Jastrow factor in a naive way
END_DOC
integer :: alpha, i, j, p, k, l, lmax, m, cindex
double precision :: ria, rja, rij, rij_inv
double precision :: c, c_inv, t, x, y, z ! Placeholders for optimization
PROVIDE cord_vect
factor_een_prog = 0.0d0
do alpha = 1, nnuc
do j = 2, nelec
rja = rescale_een_n(j, alpha)
do i = 1, j - 1
ria = rescale_een_n(i, alpha)
rij = rescale_een_e(i, j)
rij_inv = 1.0d0 / (rij * rij)
c = ria * rja
c_inv = 1.0d0 / c
cindex = 0
do p = 2, ncord
x = 1.0d0
do l = 1, p - 1
x = x * rij
end do
do k = p - 1, 0, -1
if ( k /= 0 ) then
lmax = p - k
else
lmax = p - k - 2
end if
t = 1.0d0
do l = 1, rshift(p - k, 1)
t = t * c
end do
do l = lmax, iand(p - k, 1), -2
cindex = cindex + 1
factor_een_prog = factor_een_prog + &
cord_vect(cindex, typenuc_arr(alpha)) * &
x * (ria ** l + rja ** l) * t
t = t * c_inv
x = x * rij_inv
end do
end do
end do
end do
end do
end do
END_PROVIDER