mirror of
https://github.com/TREX-CoE/Sherman-Morrison.git
synced 2024-11-04 05:03:59 +01:00
543 lines
18 KiB
Python
543 lines
18 KiB
Python
# Manage the view comparing a variable over different runs
|
||
|
||
import time
|
||
|
||
import pandas as pd
|
||
|
||
from math import pi
|
||
|
||
from bokeh.plotting import figure, curdoc
|
||
from bokeh.embed import components
|
||
from bokeh.models import Select, ColumnDataSource, Panel, Tabs, HoverTool, \
|
||
TextInput, CheckboxGroup, TapTool, CustomJS
|
||
|
||
import helper
|
||
import plot
|
||
|
||
|
||
##########################################################################
|
||
|
||
|
||
class CompareRuns:
|
||
|
||
# Helper functions related to CompareRuns
|
||
|
||
# From an array of timestamps, returns the array of runs names (for the x
|
||
# axis ticks), as well as the metadata (in a dict of arrays) associated to
|
||
# this array (for the tooltips)
|
||
def gen_x_series(self, timestamps):
|
||
|
||
# Initialize the objects to return
|
||
x_series = []
|
||
x_metadata = dict(
|
||
date=[],
|
||
is_git_commit=[],
|
||
hash=[],
|
||
author=[],
|
||
message=[]
|
||
)
|
||
|
||
# n == 0 means we want all runs, we also make sure not to go out of
|
||
# bound if asked for more runs than we have
|
||
n = self.current_n_runs
|
||
if n == 0 or n > len(timestamps):
|
||
n = len(timestamps)
|
||
|
||
for i in range(0, n):
|
||
# Get metadata associated to this run
|
||
row_metadata = helper.get_metadata(
|
||
self.metadata, timestamps[-i - 1])
|
||
date = time.ctime(timestamps[-i - 1])
|
||
|
||
# Fill the x series
|
||
str = row_metadata["name"]
|
||
x_series.insert(0, helper.get_metadata(
|
||
self.metadata, timestamps[-i - 1])["name"])
|
||
|
||
# Fill the metadata lists
|
||
x_metadata["date"].insert(0, date)
|
||
x_metadata["is_git_commit"].insert(
|
||
0, row_metadata["is_git_commit"])
|
||
x_metadata["hash"].insert(0, row_metadata["hash"])
|
||
x_metadata["author"].insert(0, row_metadata["author"])
|
||
x_metadata["message"].insert(0, row_metadata["message"])
|
||
|
||
return x_series, x_metadata
|
||
|
||
# Plots update function
|
||
|
||
def update_plots(self):
|
||
|
||
# Select all data matching current test/var/backend
|
||
|
||
runs = self.data.loc[[self.widgets["select_test"].value],
|
||
self.widgets["select_var"].value,
|
||
self.widgets["select_backend"].value]
|
||
|
||
timestamps = runs["timestamp"]
|
||
x_series, x_metadata = self.gen_x_series(timestamps.sort_values())
|
||
|
||
# Update source
|
||
|
||
main_dict = runs.to_dict("series")
|
||
main_dict["x"] = x_series
|
||
|
||
# Add metadata (for tooltip)
|
||
main_dict.update(x_metadata)
|
||
|
||
# Select the last n runs only
|
||
n = self.current_n_runs
|
||
main_dict = {key: value[-n:] for key, value in main_dict.items()}
|
||
|
||
# Generate ColumnDataSources for the 3 dotplots
|
||
for stat in ["sigma", "s10", "s2"]:
|
||
dict = {
|
||
"%s_x" % stat: main_dict["x"],
|
||
|
||
"is_git_commit": main_dict["is_git_commit"],
|
||
"date": main_dict["date"],
|
||
"hash": main_dict["hash"],
|
||
"author": main_dict["author"],
|
||
"message": main_dict["message"],
|
||
|
||
stat: main_dict[stat],
|
||
|
||
"nsamples": main_dict["nsamples"],
|
||
}
|
||
|
||
if stat == "s10" or stat == "s2":
|
||
dict["%s_lower_bound" %
|
||
stat] = main_dict["%s_lower_bound" %
|
||
stat]
|
||
|
||
# Filter outliers if the box is checked
|
||
if len(self.widgets["outliers_filtering_compare"].active) > 0:
|
||
outliers = helper.detect_outliers(dict[stat])
|
||
dict[stat] = helper.remove_outliers(dict[stat], outliers)
|
||
dict["%s_x" % stat] = helper.remove_outliers(
|
||
dict["%s_x" % stat], outliers)
|
||
|
||
# Assign ColumnDataSource
|
||
self.sources["%s_source" % stat].data = dict
|
||
|
||
# Generate ColumnDataSource for the boxplot
|
||
dict = {
|
||
"is_git_commit": main_dict["is_git_commit"],
|
||
"date": main_dict["date"],
|
||
"hash": main_dict["hash"],
|
||
"author": main_dict["author"],
|
||
"message": main_dict["message"],
|
||
|
||
"x": main_dict["x"],
|
||
"min": main_dict["min"],
|
||
"quantile25": main_dict["quantile25"],
|
||
"quantile50": main_dict["quantile50"],
|
||
"quantile75": main_dict["quantile75"],
|
||
"max": main_dict["max"],
|
||
"mu": main_dict["mu"],
|
||
"pvalue": main_dict["pvalue"],
|
||
|
||
"nsamples": main_dict["nsamples"]
|
||
}
|
||
|
||
self.sources["boxplot_source"].data = dict
|
||
|
||
# Update x axis
|
||
|
||
helper.reset_x_range(
|
||
self.plots["boxplot"],
|
||
self.sources["boxplot_source"].data["x"]
|
||
)
|
||
helper.reset_x_range(
|
||
self.plots["sigma_plot"],
|
||
self.sources["sigma_source"].data["sigma_x"]
|
||
)
|
||
helper.reset_x_range(
|
||
self.plots["s10_plot"],
|
||
self.sources["s10_source"].data["s10_x"]
|
||
)
|
||
helper.reset_x_range(
|
||
self.plots["s2_plot"],
|
||
self.sources["s2_source"].data["s2_x"]
|
||
)
|
||
|
||
# Widgets' callback functions
|
||
|
||
def update_test(self, attrname, old, new):
|
||
|
||
# If the value is updated by the CustomJS, self.widgets["select_var"].value
|
||
# won't be updated, so we have to look for that case and assign it
|
||
# manually
|
||
|
||
# "new" should be a list when updated by CustomJS
|
||
if isinstance(new, list):
|
||
# If filtering removed all options, we might have an empty list
|
||
# (in this case, we just skip the callback and do nothing)
|
||
if len(new) > 0:
|
||
new = new[0]
|
||
else:
|
||
return
|
||
|
||
if new != self.widgets["select_test"].value:
|
||
# The callback will be triggered again with the updated value
|
||
self.widgets["select_test"].value = new
|
||
return
|
||
|
||
# New list of available vars
|
||
self.vars = self.data.loc[new]\
|
||
.index.get_level_values("variable").drop_duplicates().tolist()
|
||
self.widgets["select_var"].options = self.vars
|
||
|
||
# Reset var selection if old one is not available in new vars
|
||
if self.widgets["select_var"].value not in self.vars:
|
||
self.widgets["select_var"].value = self.vars[0]
|
||
# The update_var callback will be triggered by the assignment
|
||
|
||
else:
|
||
# Trigger the callback manually (since the plots need to be updated
|
||
# anyway)
|
||
self.update_var("", "", self.widgets["select_var"].value)
|
||
|
||
def update_var(self, attrname, old, new):
|
||
|
||
# If the value is updated by the CustomJS, self.widgets["select_var"].value
|
||
# won't be updated, so we have to look for that case and assign it
|
||
# manually
|
||
|
||
# new should be a list when updated by CustomJS
|
||
if isinstance(new, list):
|
||
new = new[0]
|
||
|
||
if new != self.widgets["select_var"].value:
|
||
# The callback will be triggered again with the updated value
|
||
self.widgets["select_var"].value = new
|
||
return
|
||
|
||
# New list of available backends
|
||
self.backends = self.data.loc[self.widgets["select_test"].value, self.widgets["select_var"].value]\
|
||
.index.get_level_values("vfc_backend").drop_duplicates().tolist()
|
||
self.widgets["select_backend"].options = self.backends
|
||
|
||
# Reset backend selection if old one is not available in new backends
|
||
if self.widgets["select_backend"].value not in self.backends:
|
||
self.widgets["select_backend"].value = self.backends[0]
|
||
# The update_backend callback will be triggered by the assignment
|
||
|
||
else:
|
||
# Trigger the callback manually (since the plots need to be updated
|
||
# anyway)
|
||
self.update_backend("", "", self.widgets["select_backend"].value)
|
||
|
||
def update_backend(self, attrname, old, new):
|
||
|
||
# Simply update plots, since no other data is affected
|
||
self.update_plots()
|
||
|
||
def update_n_runs(self, attrname, old, new):
|
||
# Simply update runs selection (value and string display)
|
||
self.select_n_runs.value = new
|
||
self.current_n_runs = self.n_runs_dict[self.select_n_runs.value]
|
||
|
||
self.update_plots()
|
||
|
||
def update_outliers_filtering(self, attrname, old, new):
|
||
self.update_plots()
|
||
|
||
# Bokeh setup functions
|
||
|
||
def setup_plots(self):
|
||
|
||
tools = "pan, wheel_zoom, xwheel_zoom, ywheel_zoom, reset, save"
|
||
|
||
# Custom JS callback that will be used when tapping on a run
|
||
# Only switches the view, a server callback is required to update plots
|
||
# (defined inside template to avoid bloating server w/ too much JS code)
|
||
js_tap_callback = "goToInspectRuns();"
|
||
|
||
# Box plot
|
||
self.plots["boxplot"] = figure(
|
||
name="boxplot", title="Variable distribution over runs",
|
||
plot_width=900, plot_height=400, x_range=[""],
|
||
tools=tools, sizing_mode="scale_width"
|
||
)
|
||
|
||
box_tooltips = [
|
||
("Git commit", "@is_git_commit"),
|
||
("Date", "@date"),
|
||
("Hash", "@hash"),
|
||
("Author", "@author"),
|
||
("Message", "@message"),
|
||
("Min", "@min{%0.18e}"),
|
||
("Max", "@max{%0.18e}"),
|
||
("1st quartile", "@quantile25{%0.18e}"),
|
||
("Median", "@quantile50{%0.18e}"),
|
||
("3rd quartile", "@quantile75{%0.18e}"),
|
||
("μ", "@mu{%0.18e}"),
|
||
("p-value", "@pvalue"),
|
||
("Number of samples", "@nsamples")
|
||
]
|
||
box_tooltips_formatters = {
|
||
"@min": "printf",
|
||
"@max": "printf",
|
||
"@quantile25": "printf",
|
||
"@quantile50": "printf",
|
||
"@quantile75": "printf",
|
||
"@mu": "printf"
|
||
}
|
||
|
||
plot.fill_boxplot(
|
||
self.plots["boxplot"], self.sources["boxplot_source"],
|
||
tooltips=box_tooltips,
|
||
tooltips_formatters=box_tooltips_formatters,
|
||
js_tap_callback=js_tap_callback,
|
||
server_tap_callback=self.inspect_run_callback_boxplot,
|
||
)
|
||
self.doc.add_root(self.plots["boxplot"])
|
||
|
||
# Sigma plot (bar plot)
|
||
self.plots["sigma_plot"] = figure(
|
||
name="sigma_plot", title="Standard deviation σ over runs",
|
||
plot_width=900, plot_height=400, x_range=[""],
|
||
tools=tools, sizing_mode="scale_width"
|
||
)
|
||
|
||
sigma_tooltips = [
|
||
("Git commit", "@is_git_commit"),
|
||
("Date", "@date"),
|
||
("Hash", "@hash"),
|
||
("Author", "@author"),
|
||
("Message", "@message"),
|
||
("σ", "@sigma"),
|
||
("Number of samples", "@nsamples")
|
||
]
|
||
|
||
plot.fill_dotplot(
|
||
self.plots["sigma_plot"], self.sources["sigma_source"], "sigma",
|
||
tooltips=sigma_tooltips,
|
||
js_tap_callback=js_tap_callback,
|
||
server_tap_callback=self.inspect_run_callback_sigma,
|
||
lines=True
|
||
)
|
||
self.doc.add_root(self.plots["sigma_plot"])
|
||
|
||
# s plot (bar plot with 2 tabs)
|
||
self.plots["s10_plot"] = figure(
|
||
name="s10_plot", title="Significant digits s over runs",
|
||
plot_width=900, plot_height=400, x_range=[""],
|
||
tools=tools, sizing_mode="scale_width"
|
||
)
|
||
|
||
s10_tooltips = [
|
||
("Git commit", "@is_git_commit"),
|
||
("Date", "@date"),
|
||
("Hash", "@hash"),
|
||
("Author", "@author"),
|
||
("Message", "@message"),
|
||
("s", "@s10"),
|
||
("s lower bound", "@s10_lower_bound"),
|
||
("Number of samples", "@nsamples")
|
||
]
|
||
|
||
plot.fill_dotplot(
|
||
self.plots["s10_plot"], self.sources["s10_source"], "s10",
|
||
tooltips=s10_tooltips,
|
||
js_tap_callback=js_tap_callback,
|
||
server_tap_callback=self.inspect_run_callback_s10,
|
||
lines=True,
|
||
lower_bound=True
|
||
)
|
||
s10_tab = Panel(child=self.plots["s10_plot"], title="Base 10")
|
||
|
||
self.plots["s2_plot"] = figure(
|
||
name="s2_plot", title="Significant digits s over runs",
|
||
plot_width=900, plot_height=400, x_range=[""],
|
||
tools=tools, sizing_mode="scale_width"
|
||
)
|
||
|
||
s2_tooltips = [
|
||
("Git commit", "@is_git_commit"),
|
||
("Date", "@date"),
|
||
("Hash", "@hash"),
|
||
("Author", "@author"),
|
||
("Message", "@message"),
|
||
("s", "@s2"),
|
||
("s lower bound", "@s2_lower_bound"),
|
||
("Number of samples", "@nsamples")
|
||
]
|
||
|
||
plot.fill_dotplot(
|
||
self.plots["s2_plot"], self.sources["s2_source"], "s2",
|
||
tooltips=s2_tooltips,
|
||
js_tap_callback=js_tap_callback,
|
||
server_tap_callback=self.inspect_run_callback_s2,
|
||
lines=True,
|
||
lower_bound=True
|
||
)
|
||
s2_tab = Panel(child=self.plots["s2_plot"], title="Base 2")
|
||
|
||
s_tabs = Tabs(
|
||
name="s_tabs",
|
||
tabs=[s10_tab, s2_tab],
|
||
tabs_location="below"
|
||
)
|
||
|
||
self.doc.add_root(s_tabs)
|
||
|
||
def setup_widgets(self):
|
||
|
||
# Initial selections
|
||
|
||
# Test/var/backend combination (we select all first elements at init)
|
||
self.tests = self.data\
|
||
.index.get_level_values("test").drop_duplicates().tolist()
|
||
|
||
self.vars = self.data.loc[self.tests[0]]\
|
||
.index.get_level_values("variable").drop_duplicates().tolist()
|
||
|
||
self.backends = self.data.loc[self.tests[0], self.vars[0]]\
|
||
.index.get_level_values("vfc_backend").drop_duplicates().tolist()
|
||
|
||
# Custom JS callback that will be used client side to filter selections
|
||
filter_callback_js = """
|
||
selector.options = options.filter(e => e.includes(cb_obj.value));
|
||
"""
|
||
|
||
# Test selector widget
|
||
|
||
# Number of runs to display
|
||
# The dict structure allows us to get int value from the display string
|
||
# in O(1)
|
||
self.n_runs_dict = {
|
||
"Last 3 runs": 3,
|
||
"Last 5 runs": 5,
|
||
"Last 10 runs": 10,
|
||
"All runs": 0
|
||
}
|
||
|
||
# Contains all options strings
|
||
n_runs_display = list(self.n_runs_dict.keys())
|
||
|
||
# Will be used when updating plots (contains actual number to diplay)
|
||
self.current_n_runs = self.n_runs_dict[n_runs_display[1]]
|
||
|
||
# Selector widget
|
||
self.widgets["select_test"] = Select(
|
||
name="select_test", title="Test :",
|
||
value=self.tests[0], options=self.tests
|
||
)
|
||
self.doc.add_root(self.widgets["select_test"])
|
||
self.widgets["select_test"].on_change("value", self.update_test)
|
||
self.widgets["select_test"].on_change("options", self.update_test)
|
||
|
||
# Filter widget
|
||
self.widgets["test_filter"] = TextInput(
|
||
name="test_filter", title="Tests filter:"
|
||
)
|
||
self.widgets["test_filter"].js_on_change(
|
||
"value",
|
||
CustomJS(
|
||
args=dict(
|
||
options=self.tests,
|
||
selector=self.widgets["select_test"]),
|
||
code=filter_callback_js))
|
||
self.doc.add_root(self.widgets["test_filter"])
|
||
|
||
# Number of runs to display
|
||
|
||
self.widgets["select_n_runs"] = Select(
|
||
name="select_n_runs", title="Display :",
|
||
value=n_runs_display[1], options=n_runs_display
|
||
)
|
||
self.doc.add_root(self.widgets["select_n_runs"])
|
||
self.widgets["select_n_runs"].on_change("value", self.update_n_runs)
|
||
|
||
# Variable selector widget
|
||
|
||
self.widgets["select_var"] = Select(
|
||
name="select_var", title="Variable :",
|
||
value=self.vars[0], options=self.vars
|
||
)
|
||
self.doc.add_root(self.widgets["select_var"])
|
||
self.widgets["select_var"].on_change("value", self.update_var)
|
||
self.widgets["select_var"].on_change("options", self.update_var)
|
||
|
||
# Backend selector widget
|
||
|
||
self.widgets["select_backend"] = Select(
|
||
name="select_backend", title="Verificarlo backend :",
|
||
value=self.backends[0], options=self.backends
|
||
)
|
||
self.doc.add_root(self.widgets["select_backend"])
|
||
self.widgets["select_backend"].on_change("value", self.update_backend)
|
||
|
||
# Outliers filtering checkbox
|
||
|
||
self.widgets["outliers_filtering_compare"] = CheckboxGroup(
|
||
name="outliers_filtering_compare",
|
||
labels=["Filter outliers"], active=[]
|
||
)
|
||
self.doc.add_root(self.widgets["outliers_filtering_compare"])
|
||
self.widgets["outliers_filtering_compare"]\
|
||
.on_change("active", self.update_outliers_filtering)
|
||
|
||
# Communication methods
|
||
# (to send/receive messages to/from master)
|
||
|
||
# Callback to change view of Inspect runs when data is selected
|
||
|
||
def inspect_run_callback(self, new, source_name, x_name):
|
||
|
||
# In case we just unselected everything, then do nothing
|
||
if new == []:
|
||
return
|
||
|
||
index = new[-1]
|
||
run_name = self.sources[source_name].data[x_name][index]
|
||
|
||
self.master.go_to_inspect(run_name)
|
||
|
||
# Wrappers for each plot (since new is the index of the clicked element,
|
||
# it is dependent of the plot because we could have filtered some outliers)
|
||
# There doesn't seem to be an easy way to add custom parameters to a
|
||
# Bokeh callback, so using wrappers seems to be the best solution for now
|
||
|
||
def inspect_run_callback_boxplot(self, attr, old, new):
|
||
self.inspect_run_callback(new, "boxplot_source", "x")
|
||
|
||
def inspect_run_callback_sigma(self, attr, old, new):
|
||
self.inspect_run_callback(new, "sigma_source", "sigma_x")
|
||
|
||
def inspect_run_callback_s2(self, attr, old, new):
|
||
self.inspect_run_callback(new, "s2_source", "s2_x")
|
||
|
||
def inspect_run_callback_s10(self, attr, old, new):
|
||
self.inspect_run_callback(new, "s10_source", "s10_x")
|
||
|
||
# Constructor
|
||
|
||
def __init__(self, master, doc, data, metadata):
|
||
|
||
self.master = master
|
||
|
||
self.doc = doc
|
||
self.data = data
|
||
self.metadata = metadata
|
||
|
||
self.sources = {
|
||
"boxplot_source": ColumnDataSource(data={}),
|
||
"sigma_source": ColumnDataSource(data={}),
|
||
"s10_source": ColumnDataSource(data={}),
|
||
"s2_source": ColumnDataSource(data={})
|
||
}
|
||
|
||
self.plots = {}
|
||
self.widgets = {}
|
||
|
||
# Setup Bokeh objects
|
||
self.setup_plots()
|
||
self.setup_widgets()
|
||
|
||
# At this point, everything should have been initialized, so we can
|
||
# show the plots for the first time
|
||
self.update_plots()
|