mirror of
https://github.com/TREX-CoE/Sherman-Morrison.git
synced 2025-01-13 06:28:35 +01:00
571 lines
20 KiB
Python
571 lines
20 KiB
Python
# Manage the view comparing the variables of a run
|
||
|
||
from math import pi
|
||
from functools import partial
|
||
|
||
import pandas as pd
|
||
import numpy as np
|
||
|
||
from bokeh.plotting import figure, curdoc
|
||
from bokeh.embed import components
|
||
from bokeh.models import Select, ColumnDataSource, Panel, Tabs, HoverTool,\
|
||
RadioButtonGroup, CheckboxGroup, CustomJS
|
||
|
||
import helper
|
||
import plot
|
||
|
||
|
||
##########################################################################
|
||
|
||
|
||
class InspectRuns:
|
||
|
||
# Helper functions related to InspectRun
|
||
|
||
# Returns a dictionary mapping user-readable strings to all run timestamps
|
||
def gen_runs_selection(self):
|
||
|
||
runs_dict = {}
|
||
|
||
# Iterate over timestamp rows (runs) and fill dict
|
||
for row in self.metadata.iloc:
|
||
# The syntax used by pandas makes this part a bit tricky :
|
||
# row.name is the index of metadata (so it refers to the
|
||
# timestamp), whereas row["name"] is the column called "name"
|
||
# (which is the display string used for the run)
|
||
|
||
# runs_dict[run's name] = run's timestamp
|
||
runs_dict[row["name"]] = row.name
|
||
|
||
return runs_dict
|
||
|
||
def gen_boxplot_tooltips(self, prefix):
|
||
return [
|
||
("Name", "@%s_x" % prefix),
|
||
("Min", "@" + prefix + "_min{%0.18e}"),
|
||
("Max", "@" + prefix + "_max{%0.18e}"),
|
||
("1st quartile", "@" + prefix + "_quantile25{%0.18e}"),
|
||
("Median", "@" + prefix + "_quantile50{%0.18e}"),
|
||
("3rd quartile", "@" + prefix + "_quantile75{%0.18e}"),
|
||
("μ", "@" + prefix + "_mu{%0.18e}"),
|
||
("Number of samples (tests)", "@nsamples")
|
||
]
|
||
|
||
def gen_boxplot_tooltips_formatters(self, prefix):
|
||
return {
|
||
"@%s_min" % prefix: "printf",
|
||
"@%s_max" % prefix: "printf",
|
||
"@%s_quantile25" % prefix: "printf",
|
||
"@%s_quantile50" % prefix: "printf",
|
||
"@%s_quantile75" % prefix: "printf",
|
||
"@%s_mu" % prefix: "printf"
|
||
}
|
||
|
||
# Data processing helper
|
||
# (computes new distributions for sigma, s2, s10)
|
||
|
||
def data_processing(self, dataframe):
|
||
|
||
# Compute aggragated mu
|
||
dataframe["mu"] = np.vectorize(
|
||
np.average)(
|
||
dataframe["mu"],
|
||
weights=dataframe["nsamples"])
|
||
|
||
# nsamples is the number of aggregated elements (as well as the number
|
||
# of samples for our new sigma and s distributions)
|
||
dataframe["nsamples"] = dataframe["nsamples"].apply(lambda x: len(x))
|
||
|
||
dataframe["mu_x"] = dataframe.index
|
||
# Make sure that strings don't excede a certain length
|
||
dataframe["mu_x"] = dataframe["mu_x"].apply(
|
||
lambda x: x[:17] + "[...]" + x[-17:] if len(x) > 39 else x
|
||
)
|
||
|
||
# Get quantiles and mu for sigma, s10, s2
|
||
for prefix in ["sigma", "s10", "s2"]:
|
||
|
||
dataframe["%s_x" % prefix] = dataframe["mu_x"]
|
||
|
||
dataframe[prefix] = dataframe[prefix].apply(np.sort)
|
||
|
||
dataframe["%s_min" % prefix] = dataframe[prefix].apply(np.min)
|
||
dataframe["%s_quantile25" % prefix] = dataframe[prefix].apply(
|
||
np.quantile, args=(0.25,))
|
||
dataframe["%s_quantile50" % prefix] = dataframe[prefix].apply(
|
||
np.quantile, args=(0.50,))
|
||
dataframe["%s_quantile75" % prefix] = dataframe[prefix].apply(
|
||
np.quantile, args=(0.75,))
|
||
dataframe["%s_max" % prefix] = dataframe[prefix].apply(np.max)
|
||
dataframe["%s_mu" % prefix] = dataframe[prefix].apply(np.average)
|
||
del dataframe[prefix]
|
||
|
||
return dataframe
|
||
|
||
# Plots update function
|
||
|
||
def update_plots(self):
|
||
|
||
groupby_display = self.widgets["groupby_radio"].labels[
|
||
self.widgets["groupby_radio"].active
|
||
]
|
||
groupby = self.factors_dict[groupby_display]
|
||
|
||
filterby_display = self.widgets["filterby_radio"].labels[
|
||
self.widgets["filterby_radio"].active
|
||
]
|
||
filterby = self.factors_dict[filterby_display]
|
||
|
||
# Groupby and aggregate lines belonging to the same group in lists
|
||
|
||
groups = self.run_data[
|
||
self.run_data.index.isin(
|
||
[self.widgets["select_filter"].value],
|
||
level=filterby
|
||
)
|
||
].groupby(groupby)
|
||
|
||
groups = groups.agg({
|
||
"sigma": lambda x: x.tolist(),
|
||
"s10": lambda x: x.tolist(),
|
||
"s2": lambda x: x.tolist(),
|
||
|
||
"mu": lambda x: x.tolist(),
|
||
|
||
# Used for mu weighted average first, then will be replaced
|
||
"nsamples": lambda x: x.tolist()
|
||
})
|
||
|
||
# Compute the new distributions, ...
|
||
groups = self.data_processing(groups).to_dict("list")
|
||
|
||
# Update source
|
||
|
||
# Assign each ColumnDataSource, starting with the boxplots
|
||
for prefix in ["sigma", "s10", "s2"]:
|
||
|
||
dict = {
|
||
"%s_x" % prefix: groups["%s_x" % prefix],
|
||
"%s_min" % prefix: groups["%s_min" % prefix],
|
||
"%s_quantile25" % prefix: groups["%s_quantile25" % prefix],
|
||
"%s_quantile50" % prefix: groups["%s_quantile50" % prefix],
|
||
"%s_quantile75" % prefix: groups["%s_quantile75" % prefix],
|
||
"%s_max" % prefix: groups["%s_max" % prefix],
|
||
"%s_mu" % prefix: groups["%s_mu" % prefix],
|
||
|
||
"nsamples": groups["nsamples"]
|
||
}
|
||
|
||
# Filter outliers if the box is checked
|
||
if len(self.widgets["outliers_filtering_inspect"].active) > 0:
|
||
|
||
# Boxplots will be filtered by max then min
|
||
top_outliers = helper.detect_outliers(dict["%s_max" % prefix])
|
||
helper.remove_boxplot_outliers(dict, top_outliers, prefix)
|
||
|
||
bottom_outliers = helper.detect_outliers(
|
||
dict["%s_min" % prefix])
|
||
helper.remove_boxplot_outliers(dict, bottom_outliers, prefix)
|
||
|
||
self.sources["%s_source" % prefix].data = dict
|
||
|
||
# Finish with the mu plot
|
||
dict = {
|
||
"mu_x": groups["mu_x"],
|
||
"mu": groups["mu"],
|
||
|
||
"nsamples": groups["nsamples"]
|
||
}
|
||
|
||
self.sources["mu_source"].data = dict
|
||
|
||
# Filter outliers if the box is checked
|
||
if len(self.widgets["outliers_filtering_inspect"].active) > 0:
|
||
mu_outliers = helper.detect_outliers(groups["mu"])
|
||
groups["mu"] = helper.remove_outliers(groups["mu"], mu_outliers)
|
||
groups["mu_x"] = helper.remove_outliers(
|
||
groups["mu_x"], mu_outliers)
|
||
|
||
# Update plots axis/titles
|
||
|
||
# Get display string of the last (unselected) factor
|
||
factors_dict = self.factors_dict.copy()
|
||
del factors_dict[groupby_display]
|
||
del factors_dict[filterby_display]
|
||
for_all = list(factors_dict.keys())[0]
|
||
|
||
# Update all display strings for plot title (remove caps, plural)
|
||
groupby_display = groupby_display.lower()
|
||
filterby_display = filterby_display.lower()[:-1]
|
||
for_all = for_all.lower()
|
||
|
||
self.plots["mu_inspect"].title.text = \
|
||
"Empirical average μ of %s (groupped by %s, for all %s)" \
|
||
% (filterby_display, groupby_display, for_all)
|
||
|
||
self.plots["sigma_inspect"].title.text = \
|
||
"Standard deviation σ of %s (groupped by %s, for all %s)" \
|
||
% (filterby_display, groupby_display, for_all)
|
||
|
||
self.plots["s10_inspect"].title.text = \
|
||
"Significant digits s of %s (groupped by %s, for all %s)" \
|
||
% (filterby_display, groupby_display, for_all)
|
||
|
||
self.plots["s2_inspect"].title.text = \
|
||
"Significant digits s of %s (groupped by %s, for all %s)" \
|
||
% (filterby_display, groupby_display, for_all)
|
||
|
||
helper.reset_x_range(self.plots["mu_inspect"], groups["mu_x"])
|
||
helper.reset_x_range(self.plots["sigma_inspect"], groups["sigma_x"])
|
||
helper.reset_x_range(self.plots["s10_inspect"], groups["s10_x"])
|
||
helper.reset_x_range(self.plots["s2_inspect"], groups["s2_x"])
|
||
|
||
# Widets' callback functions
|
||
|
||
# Run selector callback
|
||
|
||
def update_run(self, attrname, old, new):
|
||
|
||
filterby = self.widgets["filterby_radio"].labels[
|
||
self.widgets["filterby_radio"].active
|
||
]
|
||
filterby = self.factors_dict[filterby]
|
||
|
||
# Update run selection (by using dict mapping)
|
||
self.current_run = self.runs_dict[new]
|
||
|
||
# Update run data
|
||
self.run_data = self.data[self.data["timestamp"] == self.current_run]
|
||
|
||
# Save old selected option
|
||
old_value = self.widgets["select_filter"].value
|
||
|
||
# Update filter options
|
||
options = self.run_data.index\
|
||
.get_level_values(filterby).drop_duplicates().tolist()
|
||
self.widgets["select_filter"].options = options
|
||
|
||
if old_value not in self.widgets["select_filter"].options:
|
||
self.widgets["select_filter"].value = options[0]
|
||
# The update_var callback will be triggered by the assignment
|
||
|
||
else:
|
||
# Trigger the callback manually (since the plots need to be updated
|
||
# anyway)
|
||
self.update_filter("", "", old_value)
|
||
|
||
# "Group by" radio
|
||
|
||
def update_groupby(self, attrname, old, new):
|
||
|
||
# Update "Filter by" radio list
|
||
filterby_list = list(self.factors_dict.keys())
|
||
del filterby_list[self.widgets["groupby_radio"].active]
|
||
self.widgets["filterby_radio"].labels = filterby_list
|
||
|
||
filterby = self.widgets["filterby_radio"].labels[
|
||
self.widgets["filterby_radio"].active
|
||
]
|
||
filterby = self.factors_dict[filterby]
|
||
|
||
# Save old selected option
|
||
old_value = self.widgets["select_filter"].value
|
||
|
||
# Update filter options
|
||
options = self.run_data.index\
|
||
.get_level_values(filterby).drop_duplicates().tolist()
|
||
self.widgets["select_filter"].options = options
|
||
|
||
if old_value not in self.widgets["select_filter"].options:
|
||
self.widgets["select_filter"].value = options[0]
|
||
# The update_var callback will be triggered by the assignment
|
||
|
||
else:
|
||
# Trigger the callback manually (since the plots need to be updated
|
||
# anyway)
|
||
self.update_filter("", "", old_value)
|
||
|
||
# "Filter by" radio
|
||
|
||
def update_filterby(self, attrname, old, new):
|
||
|
||
filterby = self.widgets["filterby_radio"].labels[
|
||
self.widgets["filterby_radio"].active
|
||
]
|
||
filterby = self.factors_dict[filterby]
|
||
|
||
# Save old selected option
|
||
old_value = self.widgets["select_filter"].value
|
||
|
||
# Update filter selector options
|
||
options = self.run_data.index\
|
||
.get_level_values(filterby).drop_duplicates().tolist()
|
||
self.widgets["select_filter"].options = options
|
||
|
||
if old_value not in self.widgets["select_filter"].options:
|
||
self.widgets["select_filter"].value = options[0]
|
||
# The update_var callback will be triggered by the assignment
|
||
|
||
else:
|
||
# Trigger the callback manually (since the plots need to be updated
|
||
# anyway)
|
||
self.update_filter("", "", old_value)
|
||
|
||
# Filter selector callback
|
||
|
||
def update_filter(self, attrname, old, new):
|
||
self.update_plots()
|
||
|
||
# Filter outliers checkbox callback
|
||
|
||
def update_outliers_filtering(self, attrname, old, new):
|
||
# The status (checked/unchecked) of the checkbox is also verified inside
|
||
# self.update_plots(), so calling this function is enough
|
||
self.update_plots()
|
||
|
||
# Bokeh setup functions
|
||
# (for both variable and backend selection at once)
|
||
|
||
def setup_plots(self):
|
||
|
||
tools = "pan, wheel_zoom, xwheel_zoom, ywheel_zoom, reset, save"
|
||
|
||
# Tooltips and formatters
|
||
|
||
dotplot_tooltips = [
|
||
("Name", "@mu_x"),
|
||
("μ", "@mu{%0.18e}"),
|
||
("Number of samples (tests)", "@nsamples")
|
||
]
|
||
dotplot_formatters = {
|
||
"@mu": "printf"
|
||
}
|
||
|
||
sigma_boxplot_tooltips = self.gen_boxplot_tooltips("sigma")
|
||
sigma_boxplot_tooltips_formatters = self.gen_boxplot_tooltips_formatters(
|
||
"sigma")
|
||
|
||
s10_boxplot_tooltips = self.gen_boxplot_tooltips("s10")
|
||
s10_boxplot_tooltips_formatters = self.gen_boxplot_tooltips_formatters(
|
||
"s10")
|
||
|
||
s2_boxplot_tooltips = self.gen_boxplot_tooltips("s2")
|
||
s2_boxplot_tooltips_formatters = self.gen_boxplot_tooltips_formatters(
|
||
"s2")
|
||
|
||
# Plots
|
||
|
||
# Mu plot
|
||
self.plots["mu_inspect"] = figure(
|
||
name="mu_inspect",
|
||
title="",
|
||
plot_width=900, plot_height=400, x_range=[""],
|
||
tools=tools, sizing_mode="scale_width"
|
||
)
|
||
plot.fill_dotplot(
|
||
self.plots["mu_inspect"], self.sources["mu_source"], "mu",
|
||
tooltips=dotplot_tooltips,
|
||
tooltips_formatters=dotplot_formatters
|
||
)
|
||
self.doc.add_root(self.plots["mu_inspect"])
|
||
|
||
# Sigma plot
|
||
self.plots["sigma_inspect"] = figure(
|
||
name="sigma_inspect",
|
||
title="",
|
||
plot_width=900, plot_height=400, x_range=[""],
|
||
tools=tools, sizing_mode="scale_width"
|
||
)
|
||
plot.fill_boxplot(
|
||
self.plots["sigma_inspect"],
|
||
self.sources["sigma_source"],
|
||
prefix="sigma",
|
||
tooltips=sigma_boxplot_tooltips,
|
||
tooltips_formatters=sigma_boxplot_tooltips_formatters)
|
||
self.doc.add_root(self.plots["sigma_inspect"])
|
||
|
||
# s plots
|
||
self.plots["s10_inspect"] = figure(
|
||
name="s10_inspect",
|
||
title="",
|
||
plot_width=900, plot_height=400, x_range=[""],
|
||
tools=tools, sizing_mode='scale_width'
|
||
)
|
||
plot.fill_boxplot(
|
||
self.plots["s10_inspect"],
|
||
self.sources["s10_source"],
|
||
prefix="s10",
|
||
tooltips=s10_boxplot_tooltips,
|
||
tooltips_formatters=s10_boxplot_tooltips_formatters)
|
||
s10_tab_inspect = Panel(
|
||
child=self.plots["s10_inspect"],
|
||
title="Base 10")
|
||
|
||
self.plots["s2_inspect"] = figure(
|
||
name="s2_inspect",
|
||
title="",
|
||
plot_width=900, plot_height=400, x_range=[""],
|
||
tools=tools, sizing_mode='scale_width'
|
||
)
|
||
plot.fill_boxplot(
|
||
self.plots["s2_inspect"], self.sources["s2_source"], prefix="s2",
|
||
tooltips=s2_boxplot_tooltips,
|
||
tooltips_formatters=s2_boxplot_tooltips_formatters
|
||
)
|
||
s2_tab_inspect = Panel(child=self.plots["s2_inspect"], title="Base 2")
|
||
|
||
s_tabs_inspect = Tabs(
|
||
name="s_tabs_inspect",
|
||
tabs=[s10_tab_inspect, s2_tab_inspect], tabs_location="below"
|
||
)
|
||
self.doc.add_root(s_tabs_inspect)
|
||
|
||
def setup_widgets(self):
|
||
|
||
# Generation of selectable items
|
||
|
||
# Dict contains all inspectable runs (maps display strings to timestamps)
|
||
# The dict structure allows to get the timestamp from the display string
|
||
# in O(1)
|
||
self.runs_dict = self.gen_runs_selection()
|
||
|
||
# Dict maps display strings to column names for the different factors
|
||
# (var, backend, test)
|
||
self.factors_dict = {
|
||
"Variables": "variable",
|
||
"Backends": "vfc_backend",
|
||
"Tests": "test"
|
||
}
|
||
|
||
# Run selection
|
||
|
||
# Contains all options strings
|
||
runs_display = list(self.runs_dict.keys())
|
||
# Will be used when updating plots (contains actual number)
|
||
self.current_run = self.runs_dict[runs_display[-1]]
|
||
# Contains the selected option string, used to update current_n_runs
|
||
current_run_display = runs_display[-1]
|
||
# This contains only entries matching the run
|
||
self.run_data = self.data[self.data["timestamp"] == self.current_run]
|
||
|
||
change_run_callback_js = "updateRunMetadata(cb_obj.value);"
|
||
|
||
self.widgets["select_run"] = Select(
|
||
name="select_run", title="Run :",
|
||
value=current_run_display, options=runs_display
|
||
)
|
||
self.doc.add_root(self.widgets["select_run"])
|
||
self.widgets["select_run"].on_change("value", self.update_run)
|
||
self.widgets["select_run"].js_on_change("value", CustomJS(
|
||
code=change_run_callback_js,
|
||
args=(dict(
|
||
metadata=helper.metadata_to_dict(
|
||
helper.get_metadata(self.metadata, self.current_run)
|
||
)
|
||
))
|
||
))
|
||
|
||
# Factors selection
|
||
|
||
# "Group by" radio
|
||
self.widgets["groupby_radio"] = RadioButtonGroup(
|
||
name="groupby_radio",
|
||
labels=list(self.factors_dict.keys()), active=0
|
||
)
|
||
self.doc.add_root(self.widgets["groupby_radio"])
|
||
# The functions are defined inside the template to avoid writing too
|
||
# much JS server side
|
||
self.widgets["groupby_radio"].on_change(
|
||
"active",
|
||
self.update_groupby
|
||
)
|
||
|
||
# "Filter by" radio
|
||
# Get all possible factors, and remove the one selected in "Group by"
|
||
filterby_list = list(self.factors_dict.keys())
|
||
del filterby_list[self.widgets["groupby_radio"].active]
|
||
|
||
self.widgets["filterby_radio"] = RadioButtonGroup(
|
||
name="filterby_radio",
|
||
labels=filterby_list, active=0
|
||
)
|
||
self.doc.add_root(self.widgets["filterby_radio"])
|
||
# The functions are defined inside the template to avoid writing too
|
||
# much JS server side
|
||
self.widgets["filterby_radio"].on_change(
|
||
"active",
|
||
self.update_filterby
|
||
)
|
||
|
||
# Filter selector
|
||
|
||
filterby = self.widgets["filterby_radio"].labels[
|
||
self.widgets["filterby_radio"].active
|
||
]
|
||
filterby = self.factors_dict[filterby]
|
||
|
||
options = self.run_data.index\
|
||
.get_level_values(filterby).drop_duplicates().tolist()
|
||
|
||
self.widgets["select_filter"] = Select(
|
||
# We need a different name to avoid collision in the template with
|
||
# the runs comparison's widget
|
||
name="select_filter", title="Select a filter :",
|
||
value=options[0], options=options
|
||
)
|
||
self.doc.add_root(self.widgets["select_filter"])
|
||
self.widgets["select_filter"]\
|
||
.on_change("value", self.update_filter)
|
||
|
||
# Toggle for outliers filtering
|
||
|
||
self.widgets["outliers_filtering_inspect"] = CheckboxGroup(
|
||
name="outliers_filtering_inspect",
|
||
labels=["Filter outliers"], active=[]
|
||
)
|
||
self.doc.add_root(self.widgets["outliers_filtering_inspect"])
|
||
self.widgets["outliers_filtering_inspect"]\
|
||
.on_change("active", self.update_outliers_filtering)
|
||
|
||
# Communication methods
|
||
# (to send/receive messages to/from master)
|
||
|
||
# When received, switch to the run_name in parameter
|
||
|
||
def switch_view(self, run_name):
|
||
self.widgets["select_run"].value = run_name
|
||
|
||
# Constructor
|
||
|
||
def __init__(self, master, doc, data, metadata):
|
||
|
||
self.master = master
|
||
|
||
self.doc = doc
|
||
self.data = data
|
||
self.metadata = metadata
|
||
|
||
self.sources = {
|
||
"mu_source": ColumnDataSource(data={}),
|
||
"sigma_source": ColumnDataSource(data={}),
|
||
"s10_source": ColumnDataSource(data={}),
|
||
"s2_source": ColumnDataSource(data={})
|
||
}
|
||
|
||
self.plots = {}
|
||
self.widgets = {}
|
||
|
||
# Setup Bokeh objects
|
||
self.setup_plots()
|
||
self.setup_widgets()
|
||
|
||
# Pass the initial metadata to the template (will be updated in CustomJS
|
||
# callbacks). This is required because metadata is not displayed in a
|
||
# Bokeh widget, so we can't update this with a server callback.
|
||
initial_run = helper.get_metadata(self.metadata, self.current_run)
|
||
self.doc.template_variables["initial_timestamp"] = self.current_run
|
||
|
||
# At this point, everything should have been initialized, so we can
|
||
# show the plots for the first time
|
||
self.update_plots()
|