mirror of
https://github.com/TREX-CoE/Sherman-Morrison.git
synced 2024-12-25 05:43:54 +01:00
310 lines
7.8 KiB
C++
310 lines
7.8 KiB
C++
// Helpers.hpp
|
|
// Some usefull helper functions to support the Maponi algorithm.
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <iostream>
|
|
#include <string>
|
|
#ifdef MKL
|
|
#include <mkl_lapacke.h>
|
|
#endif
|
|
|
|
#include <cstdio>
|
|
|
|
void Switch(unsigned int *p, unsigned int l, unsigned int lbar);
|
|
|
|
void selectLargestDenominator(unsigned int l, unsigned int N_updates,
|
|
unsigned int *Updates_index, unsigned int *p,
|
|
double ***ylk);
|
|
|
|
#ifdef MKL
|
|
lapack_int inverse(double *A, unsigned n);
|
|
#endif
|
|
|
|
template <typename T> void showScalar(T scalar, std::string name) {
|
|
std::cout << name << " = " << scalar << std::endl << std::endl;
|
|
}
|
|
|
|
template <typename T>
|
|
void showVector(T *vector, unsigned int size, std::string name) {
|
|
std::cout << name << " = " << std::endl;
|
|
for (unsigned int i = 0; i < size; i++) {
|
|
std::cout << "[ " << vector[i] << " ]" << std::endl;
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
template <typename T>
|
|
void showMatrix(T *matrix, unsigned int M, std::string name) {
|
|
std::cout.precision(17);
|
|
std::cout << name << " = [" << std::endl;
|
|
for (unsigned int i = 0; i < M; i++) {
|
|
std::cout << "[";
|
|
for (unsigned int j = 0; j < M; j++) {
|
|
if (matrix[i * M + j] >= 0) {
|
|
std::cout << " " << matrix[i * M + j] << ",";
|
|
} else {
|
|
std::cout << " " << matrix[i * M + j] << ",";
|
|
}
|
|
}
|
|
std::cout << " ]," << std::endl;
|
|
}
|
|
std::cout << "]" << std::endl;
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
template <typename T>
|
|
void showMatrix2(T *matrix, unsigned int M, unsigned int N, std::string name) {
|
|
std::cout.precision(17);
|
|
std::cout << name << " = [" << std::endl;
|
|
for (unsigned int i = 0; i < M; i++) {
|
|
std::cout << "[";
|
|
for (unsigned int j = 0; j < N; j++) {
|
|
if (matrix[i * N + j] >= 0) {
|
|
std::cout << " " << matrix[i * N + j] << ",";
|
|
} else {
|
|
std::cout << " " << matrix[i * N + j] << ",";
|
|
}
|
|
}
|
|
std::cout << " ]," << std::endl;
|
|
}
|
|
std::cout << "]" << std::endl;
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
template <typename T> T *transpose(T *A, unsigned int M) {
|
|
T *B = new T[M * M];
|
|
for (unsigned int i = 0; i < M; i++) {
|
|
for (unsigned int j = 0; j < M; j++) {
|
|
B[i * M + j] = A[i + j * M];
|
|
}
|
|
}
|
|
return B;
|
|
}
|
|
|
|
template <typename T>
|
|
void matMul(T *A, T *B, T *C, unsigned int M) {
|
|
memset(C, 0, M * M * sizeof(T));
|
|
for (unsigned int i = 0; i < M; i++) {
|
|
for (unsigned int j = 0; j < M; j++) {
|
|
for (unsigned int k = 0; k < M; k++) {
|
|
C[i * M + j] += A[i * M + k] * B[k * M + j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T1, typename T2, typename T3>
|
|
void matMul2(T1 *A, T2 *B, T3 *C, unsigned int M, unsigned int N,
|
|
unsigned int P) {
|
|
for (unsigned int i = 0; i < M; i++) {
|
|
for (unsigned int j = 0; j < P; j++) {
|
|
C[i * P + j] = 0;
|
|
for (unsigned int k = 0; k < N; k++) {
|
|
C[i * P + j] += A[i * N + k] * B[k * P + j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
T1 *outProd(T1 *vec1, T2 *vec2, unsigned int M) {
|
|
T1 *C = new T1[M * M];
|
|
for (unsigned int i = 0; i < M; i++) {
|
|
for (unsigned int j = 0; j < M; j++) {
|
|
C[i * M + j] = vec1[i + 1] * vec2[j];
|
|
}
|
|
}
|
|
return C;
|
|
}
|
|
|
|
// // This flat version doesn't work. Get's stuck in an infinite recursion loop.
|
|
// template <typename T> T determinant(T *A, unsigned int M) {
|
|
// std::cout << "determinant() called..." << std::endl;
|
|
// T det = 0;
|
|
// int p, h, k, i, j;
|
|
// T *temp = new T[M * M];
|
|
// if (M == 1) {
|
|
// return A[0];
|
|
// } else if (M == 2) {
|
|
// det = (A[0] * A[3] - A[1] * A[2]);
|
|
// return det;
|
|
// } else {
|
|
// for (p = 0; p < M; p++) {
|
|
// h = 0;
|
|
// k = 0;
|
|
// for (i = 1; i < M; i++) {
|
|
// for (j = 0; j < M; j++) {
|
|
// if (j == p) {
|
|
// continue;
|
|
// }
|
|
// temp[h * M + k] = A[i * M + j];
|
|
// k++;
|
|
// if (k == M - 1) {
|
|
// h++;
|
|
// k = 0;
|
|
// }
|
|
// }
|
|
// }
|
|
// det = det + A[p] * pow(-1, p) * determinant(temp, M - 1);
|
|
// }
|
|
// return det;
|
|
// }
|
|
// delete temp;
|
|
// }
|
|
|
|
// // This version also gets stuck in a recursion loop
|
|
// template <typename T> T determinant(T **A, unsigned int M) {
|
|
// int p, h, k, i, j;
|
|
// T det = 0;
|
|
// T **temp = new T *[M];
|
|
// for (int i = 0; i < M; i++) {
|
|
// temp[i] = new T[M];
|
|
// }
|
|
// if (M == 1) {
|
|
// return A[0][0];
|
|
// } else if (M == 2) {
|
|
// det = (A[0][0] * A[1][1] - A[0][1] * A[1][0]);
|
|
// return det;
|
|
// } else {
|
|
// for (p = 0; p < M; p++) {
|
|
// h = 0;
|
|
// k = 0;
|
|
// for (i = 1; i < M; i++) {
|
|
// for (j = 0; j < M; j++) {
|
|
// if (j == p) {
|
|
// continue;
|
|
// }
|
|
// temp[h][k] = A[i][j];
|
|
// k++;
|
|
// if (k == M - 1) {
|
|
// h++;
|
|
// k = 0;
|
|
// }
|
|
// }
|
|
// }
|
|
// det = det + A[0][p] * pow(-1, p) * determinant(temp, M - 1);
|
|
// }
|
|
// return det;
|
|
// }
|
|
// delete[] temp;
|
|
// }
|
|
|
|
template <typename T> bool is_identity(T *A, unsigned int M, double tolerance) {
|
|
for (unsigned int i = 0; i < M; i++) {
|
|
for (unsigned int j = 0; j < M; j++) {
|
|
if (i == j && std::fabs(A[i * M + j] - 1) > tolerance) {
|
|
return false;
|
|
}
|
|
if (i != j && std::fabs(A[i * M + j]) > tolerance) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
bool is_identity2(T *A, unsigned int M, double tolerance) {
|
|
double det = determinant(A, M);
|
|
if (det - 1 > tolerance) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename T> T norm_max(T *A, unsigned int Dim) {
|
|
T res = 0;
|
|
for (unsigned int i = 0; i < Dim; i++) {
|
|
for (unsigned int j = 0; j < Dim; j++) {
|
|
T delta = A[i * Dim + j];
|
|
delta = std::fabs(delta);
|
|
if (delta > res) {
|
|
res = delta;
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
template <typename T> T norm_frobenius2(T *A, unsigned int Dim) {
|
|
T res = 0;
|
|
for (unsigned int i = 0; i < Dim; i++) {
|
|
for (unsigned int j = 0; j < Dim; j++) {
|
|
T delta = A[i * Dim + j];
|
|
res += delta * delta;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
template <typename T> T residual_max(T *A, unsigned int Dim) {
|
|
T res = 0;
|
|
for (unsigned int i = 0; i < Dim; i++) {
|
|
for (unsigned int j = 0; j < Dim; j++) {
|
|
T delta = A[i * Dim + j] - (i == j);
|
|
delta = std::fabs(delta);
|
|
if (delta > res) {
|
|
res = delta;
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
template <typename T> T residual_frobenius2(T *A, unsigned int Dim) {
|
|
T res = 0;
|
|
for (unsigned int i = 0; i < Dim; i++) {
|
|
for (unsigned int j = 0; j < Dim; j++) {
|
|
T delta = A[i * Dim + j] - (i == j);
|
|
res += delta * delta;
|
|
}
|
|
}
|
|
return sqrt(res);
|
|
}
|
|
|
|
template <typename T> T residual2(T *A, unsigned int Dim) {
|
|
double res = 0.0;
|
|
for (unsigned int i = 0; i < Dim; i++) {
|
|
for (unsigned int j = 0; j < Dim; j++) {
|
|
T delta = (A[i * Dim + j] - (i == j));
|
|
res += delta * delta;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// Computes the condition number of A using a previously computed B=A^{-1}
|
|
template <typename T> T condition1(T *A, T *B, unsigned int Dim) {
|
|
T resA = 0;
|
|
T resB = 0;
|
|
for (unsigned int i = 0; i < Dim; i++) {
|
|
for (unsigned int j = 0; j < Dim; j++) {
|
|
T deltaA = A[i * Dim + j];
|
|
T deltaB = B[i * Dim + j];
|
|
resA += deltaA * deltaA;
|
|
resB += deltaB * deltaB;
|
|
}
|
|
}
|
|
return sqrt(resA * resB);
|
|
}
|
|
|
|
#ifdef MKL
|
|
// Computes the condition number of A by first inverting it with LAPACKE
|
|
template <typename T> T condition2(T *A, unsigned int Dim) {
|
|
T B[Dim * Dim];
|
|
std::memcpy(B, A, Dim * Dim * sizeof(T));
|
|
inverse(B, Dim);
|
|
T resA = 0;
|
|
T resB = 0;
|
|
for (unsigned int i = 0; i < Dim; i++) {
|
|
for (unsigned int j = 0; j < Dim; j++) {
|
|
T deltaA = A[i * Dim + j];
|
|
T deltaB = B[i * Dim + j];
|
|
resA += deltaA * deltaA;
|
|
resB += deltaB * deltaB;
|
|
}
|
|
}
|
|
return sqrt(resA) * sqrt(resB);
|
|
}
|
|
#endif
|