mirror of
https://github.com/TREX-CoE/Sherman-Morrison.git
synced 2024-12-26 06:15:08 +01:00
f7dbe3ddd8
- OpenMP version - PP defines cleanup
1089 lines
40 KiB
C
1089 lines
40 KiB
C
#include <math.h>
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include "kernels.h"
|
|
#include "nvtx.h"
|
|
|
|
extern uint64_t n_splits;
|
|
extern uint64_t block_fail;
|
|
extern uint64_t recursive_calls;
|
|
|
|
int min(int a, int b) {
|
|
return (a > b) ? b : a;
|
|
}
|
|
|
|
uint32_t qmckl_sherman_morrison(
|
|
const uint64_t vLDS, const uint64_t vDim, const uint64_t N_updates,
|
|
const double *__restrict __attribute__((aligned(8))) Updates,
|
|
const uint64_t *__restrict Updates_index, const double breakdown,
|
|
double *__restrict __attribute__((aligned(8))) Slater_inv,
|
|
double *__restrict determinant) {
|
|
|
|
const uint32_t Dim = vDim;
|
|
const uint32_t Lds = vLDS;
|
|
|
|
double __attribute__((aligned(8))) C[Dim];
|
|
double __attribute__((aligned(8))) D[Lds];
|
|
|
|
uint32_t l = 0;
|
|
// For each update
|
|
while (l < N_updates) {
|
|
// C = S^{-1} x u_l
|
|
for (uint32_t i = 0; i < Dim; i++) {
|
|
C[i] = 0.0;
|
|
#pragma ivdep
|
|
#pragma vector aligned
|
|
for (uint32_t j = 0; j < Lds; j++) {
|
|
C[i] += Slater_inv[i * Lds + j] * Updates[l * Lds + j]; // regular mat-vec product, but actually working on S_inv^T * U_l.
|
|
}
|
|
}
|
|
|
|
// Denominator: v_l^T * C
|
|
const int cui = Updates_index[l] - 1;
|
|
double den = 1.0 + C[cui];
|
|
|
|
if (fabs(den) < breakdown) {
|
|
return 1;
|
|
}
|
|
double iden = 1.0 / den;
|
|
|
|
// Update det(A)
|
|
if (determinant)
|
|
*determinant *= den;
|
|
|
|
#pragma ivdep
|
|
#pragma vector aligned
|
|
for (uint32_t j = 0; j < Lds; j++) {
|
|
D[j] = Slater_inv[cui * Lds + j]; // selecting proper column of v_l^T * S_inv
|
|
}
|
|
|
|
// A^{-1} = A^{-1} - C x D / den
|
|
for (uint32_t i = 0; i < Dim; i++) {
|
|
#pragma ivdep
|
|
#pragma vector aligned
|
|
for (uint32_t j = 0; j < Lds; j++) {
|
|
const double update = C[i] * D[j] * iden;
|
|
Slater_inv[i * Lds + j] -= update;
|
|
}
|
|
}
|
|
l += 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
COMPUTE S^{-1}P - CB^{-1}D : Dim x LDS,
|
|
where S^{-1}P : Dim x LDS,
|
|
C := S^{-1}PP^TU : Dim x 2,
|
|
B := 1 + VC : 2 x 2,
|
|
D := VS^{-1}P : 2 x LDS,
|
|
P^TU : LDS x 2,
|
|
V : 2 x Dim
|
|
*/
|
|
uint32_t qmckl_woodbury_2(const uint64_t vLDS, const uint64_t vDim,
|
|
const double *__restrict __attribute__((aligned(8)))
|
|
Updates,
|
|
const uint64_t *__restrict Updates_index,
|
|
const double breakdown,
|
|
double *__restrict __attribute__((aligned(8)))
|
|
Slater_inv,
|
|
double *__restrict determinant) {
|
|
|
|
const uint32_t Dim = vDim;
|
|
const uint32_t Lds = vLDS;
|
|
|
|
const uint32_t row1 = (Updates_index[0] - 1);
|
|
const uint32_t row2 = (Updates_index[1] - 1);
|
|
|
|
// Compute C = (S^T)^{-1}U : Dim x 2
|
|
double __attribute__((aligned(8))) C[2 * Dim];
|
|
for (uint32_t i = 0; i < Dim; i++) {
|
|
C[i * 2] = 0;
|
|
C[i * 2 + 1] = 0;
|
|
#pragma ivdep
|
|
#pragma vector aligned
|
|
for (uint32_t k = 0; k < Lds; k++) {
|
|
C[i * 2] += Slater_inv[i * Lds + k] * Updates[k];
|
|
C[i * 2 + 1] += Slater_inv[i * Lds + k] * Updates[Lds + k];
|
|
}
|
|
}
|
|
|
|
// Compute B = 1 + VC : 2 x 2
|
|
const double B0 = C[row1 * 2] + 1;
|
|
const double B1 = C[row1 * 2 + 1];
|
|
const double B2 = C[row2 * 2];
|
|
const double B3 = C[row2 * 2 + 1] + 1;
|
|
|
|
// Check if determinant of inverted matrix is not zero
|
|
double det = B0 * B3 - B1 * B2;
|
|
if (fabs(det) < breakdown) {
|
|
return 1;
|
|
}
|
|
|
|
// Update det(S) when passed
|
|
if (determinant != NULL)
|
|
*determinant *= det;
|
|
|
|
// Compute B^{-1} with explicit formula for 2 x 2 inversion
|
|
double __attribute__((aligned(8))) Binv[4], idet = 1.0 / det;
|
|
Binv[0] = idet * B3;
|
|
Binv[1] = -1.0 * idet * B1;
|
|
Binv[2] = -1.0 * idet * B2;
|
|
Binv[3] = idet * B0;
|
|
|
|
// tmp = B^{-1}D : 2 x LDS
|
|
double __attribute__((aligned(8))) tmp[2 * Lds];
|
|
double *__restrict r1dim = &(Slater_inv[row1 * Lds]);
|
|
double *__restrict r2dim = &(Slater_inv[row2 * Lds]);
|
|
#pragma ivdep
|
|
#pragma vector aligned
|
|
for (uint32_t j = 0; j < Lds; j++) {
|
|
tmp[j] = Binv[0] * r1dim[j] + Binv[1] * r2dim[j];
|
|
tmp[Lds + j] = Binv[2] * r1dim[j] + Binv[3] * r2dim[j];
|
|
}
|
|
|
|
// Compute (S^T)^{-1} - C * tmp : Dim x Lds
|
|
for (uint32_t i = 0; i < Dim; i++) {
|
|
#pragma ivdep
|
|
#pragma vector aligned
|
|
for (uint32_t j = 0; j < Lds; j++) {
|
|
Slater_inv[i * Lds + j] -= C[i * 2] * tmp[j];
|
|
Slater_inv[i * Lds + j] -= C[i * 2 + 1] * tmp[Lds + j];
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
COMPUTE (S^T)^{-1} - CB^{-1}D : Dim x LDS,
|
|
where S^T : Dim x LDS,
|
|
C := (S^T)^{-1}U : Dim x 3,
|
|
B := 1 + VC : 3 x 3,
|
|
D := V(S^T)^{-1} : 3 x LDS,
|
|
U : LDS x 3,
|
|
V : 3 x Dim
|
|
*/
|
|
uint32_t qmckl_woodbury_3(const uint64_t vLDS, const uint64_t vDim,
|
|
const double *__restrict __attribute__((aligned(8)))
|
|
Updates,
|
|
const uint64_t *__restrict Updates_index,
|
|
const double breakdown,
|
|
double *__restrict __attribute__((aligned(8)))
|
|
Slater_inv,
|
|
double *__restrict determinant) {
|
|
|
|
const uint32_t Dim = vDim;
|
|
const uint32_t Lds = vLDS;
|
|
|
|
const uint32_t row1 = (Updates_index[0] - 1);
|
|
const uint32_t row2 = (Updates_index[1] - 1);
|
|
const uint32_t row3 = (Updates_index[2] - 1);
|
|
|
|
// Compute C = (S^T)^{-1}U : Dim x 3
|
|
double __attribute__((aligned(8))) C[3 * Dim];
|
|
for (uint32_t i = 0; i < Dim; i++) {
|
|
C[i * 3] = 0;
|
|
C[i * 3 + 1] = 0;
|
|
C[i * 3 + 2] = 0;
|
|
#pragma ivdep
|
|
#pragma vector aligned
|
|
for (uint32_t k = 0; k < Lds; k++) {
|
|
C[i * 3] += Slater_inv[i * Lds + k] * Updates[k];
|
|
C[i * 3 + 1] += Slater_inv[i * Lds + k] * Updates[Lds + k];
|
|
C[i * 3 + 2] += Slater_inv[i * Lds + k] * Updates[2 * Lds + k];
|
|
}
|
|
}
|
|
|
|
// Compute B = 1 + VC : 3 x 3
|
|
const double B0 = C[row1 * 3] + 1;
|
|
const double B1 = C[row1 * 3 + 1];
|
|
const double B2 = C[row1 * 3 + 2];
|
|
const double B3 = C[row2 * 3];
|
|
const double B4 = C[row2 * 3 + 1] + 1;
|
|
const double B5 = C[row2 * 3 + 2];
|
|
const double B6 = C[row3 * 3];
|
|
const double B7 = C[row3 * 3 + 1];
|
|
const double B8 = C[row3 * 3 + 2] + 1;
|
|
|
|
// Check if determinant of B is not too close to zero
|
|
double det;
|
|
det = B0 * (B4 * B8 - B5 * B7) - B1 * (B3 * B8 - B5 * B6) +
|
|
B2 * (B3 * B7 - B4 * B6);
|
|
if (fabs(det) < breakdown) {
|
|
return 1;
|
|
}
|
|
|
|
// Update det(Slater) if passed
|
|
if (determinant != NULL)
|
|
*determinant *= det;
|
|
|
|
// Compute B^{-1} with explicit formula for 3 x 3 inversion
|
|
double __attribute__((aligned(8))) Binv[9], idet = 1.0 / det;
|
|
Binv[0] = (B4 * B8 - B7 * B5) * idet;
|
|
Binv[1] = -(B1 * B8 - B7 * B2) * idet;
|
|
Binv[2] = (B1 * B5 - B4 * B2) * idet;
|
|
Binv[3] = -(B3 * B8 - B6 * B5) * idet;
|
|
Binv[4] = (B0 * B8 - B6 * B2) * idet;
|
|
Binv[5] = -(B0 * B5 - B3 * B2) * idet;
|
|
Binv[6] = (B3 * B7 - B6 * B4) * idet;
|
|
Binv[7] = -(B0 * B7 - B6 * B1) * idet;
|
|
Binv[8] = (B0 * B4 - B3 * B1) * idet;
|
|
|
|
// tmp = B^{-1}D : 3 x LDS
|
|
double __attribute__((aligned(8))) tmp[3 * Lds];
|
|
double *__restrict r1dim = &(Slater_inv[row1 * Lds]);
|
|
double *__restrict r2dim = &(Slater_inv[row2 * Lds]);
|
|
double *__restrict r3dim = &(Slater_inv[row3 * Lds]);
|
|
#pragma ivdep
|
|
#pragma vector aligned
|
|
for (uint32_t j = 0; j < Lds; j++) {
|
|
tmp[j] = Binv[0] * r1dim[j] + Binv[1] * r2dim[j] + Binv[2] * r3dim[j];
|
|
tmp[Lds + j] = Binv[3] * r1dim[j] + Binv[4] * r2dim[j] + Binv[5] * r3dim[j];
|
|
tmp[2 * Lds + j] = Binv[6] * r1dim[j] + Binv[7] * r2dim[j] + Binv[8] * r3dim[j];
|
|
}
|
|
|
|
// Compute (S^T)^{-1} - C * tmp : Dim x Lds
|
|
for (uint32_t i = 0; i < Dim; i++) {
|
|
#pragma ivdep
|
|
#pragma vector aligned
|
|
for (uint32_t j = 0; j < Lds; j++) {
|
|
Slater_inv[i * Lds + j] -= C[i * 3] * tmp[j];
|
|
Slater_inv[i * Lds + j] -= C[i * 3 + 1] * tmp[Lds + j];
|
|
Slater_inv[i * Lds + j] -= C[i * 3 + 2] * tmp[2 * Lds + j];
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
COMPUTE S^{-1} - C B^{-1} D : Dim x LDS,
|
|
where S^{-1} : Dim x LDS,
|
|
C := S^{-1} U : Dim x K, dgemm
|
|
B := 1 + V C : K x K, copy
|
|
D := V S^{-1} : K x LDS, copy
|
|
U : LDS x K,
|
|
V : K x Dim
|
|
tmp := B^{-1} D : K x LDS, dgemm
|
|
S = S - C tmp : Dim x LDS, dgemm
|
|
*/
|
|
uint32_t qmckl_woodbury_k(const uint64_t vLDS,
|
|
const uint64_t vDim,
|
|
const uint64_t N_updates,
|
|
const double *__restrict __attribute__((aligned(8))) Updates,
|
|
const uint64_t *__restrict Updates_index,
|
|
const double breakdown,
|
|
double *__restrict __attribute__((aligned(8))) Slater_inv,
|
|
double *__restrict determinant) {
|
|
|
|
const uint32_t Dim = vDim;
|
|
const uint32_t Lds = vLDS;
|
|
|
|
// Compute C = S^{-1} U : Dim x K : standard dgemm
|
|
double* __restrict __attribute__ ((aligned(8))) C = calloc(1, Dim * N_updates * sizeof(double));
|
|
double alpha = 1.0, beta = 0.0;
|
|
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
|
Dim, N_updates, Lds,
|
|
alpha, Slater_inv, Lds, Updates, Lds,
|
|
beta, C, N_updates);
|
|
|
|
// Construct B = 1 + V C : K x K, construct D = V S^{-1} : K x LDS
|
|
double* __restrict __attribute__ ((aligned(8))) B = malloc(sizeof *B * N_updates * N_updates);
|
|
double* __restrict __attribute__ ((aligned(8))) D = malloc(sizeof *D * N_updates * Lds);
|
|
for (uint32_t i = 0; i < N_updates; i++) {
|
|
const uint32_t row = Updates_index[i] - 1;
|
|
for (uint32_t j = 0; j < N_updates ; j++) B[i * N_updates + j] = C[row * N_updates + j] + (i == j);
|
|
for (uint32_t j = 0; j < Lds; j++) D[i * Lds + j] = Slater_inv[row * Lds + j];
|
|
}
|
|
|
|
// Compute determinant by LU decomposition
|
|
int* pivot = malloc(sizeof *pivot * N_updates);
|
|
(void) LAPACKE_dgetrf(LAPACK_ROW_MAJOR, N_updates, N_updates, B, N_updates, pivot);
|
|
|
|
bool swap = false; uint32_t j = 0; double det = 1.0f;
|
|
for (uint32_t i = 0; i < N_updates; i++) {
|
|
swap = (bool)(pivot[i] - (i + 1)); // swap = {0->false: no swap, >0->true: swap}
|
|
j += (uint32_t)swap; // count # of swaps
|
|
det *= B[i * (N_updates + 1)]; // prod. of diag elm. of B
|
|
}
|
|
if (fabs(det) < breakdown) return 1; // check if determinant of B is too close to zero. If so, exit early.
|
|
if (determinant) { // update det(Slater) if determinant != NULL
|
|
if ((j & 1) != 0) det = -det; // multiply det with -1 if # of swaps is odd
|
|
*determinant *= det;
|
|
}
|
|
|
|
// Compute B^{-1} with explicit formula for K x K inversion
|
|
(void) LAPACKE_dgetri(LAPACK_ROW_MAJOR, N_updates, B, N_updates, pivot);
|
|
|
|
// tmp1 = B^{-1} D : KxLDS = KxK X KxLDS : standard dgemm
|
|
double* __restrict __attribute__ ((aligned(8))) tmp1 = calloc(1, sizeof *tmp1 * N_updates * Lds);
|
|
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
|
|
N_updates, Lds, N_updates,
|
|
alpha, B, N_updates, D, Lds,
|
|
beta, tmp1, Lds);
|
|
|
|
// Compute S^{-1} - C * tmp1 : Dim x LDS : standard dgemm
|
|
alpha = -1.0, beta = 1.0;
|
|
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
|
|
Dim, Lds, N_updates,
|
|
alpha, C, N_updates, tmp1, Lds,
|
|
beta, Slater_inv, Lds);
|
|
|
|
free(C);
|
|
free(B);
|
|
free(D);
|
|
free(tmp1);
|
|
free(pivot);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef USE_OMP
|
|
uint32_t qmckl_woodbury_k_omp(const uint64_t vLDS,
|
|
const uint64_t vDim,
|
|
const uint64_t N_updates,
|
|
const double *__restrict __attribute__((aligned(8))) Updates,
|
|
const uint64_t *__restrict Updates_index,
|
|
const double breakdown,
|
|
double *__restrict __attribute__((aligned(8))) Slater_inv,
|
|
double *__restrict determinant) {
|
|
|
|
const uint32_t Dim = vDim;
|
|
const uint32_t Lds = vLDS;
|
|
|
|
// Compute C = S^{-1} U : Dim x K : standard dgemm
|
|
double* __restrict __attribute__ ((aligned(8))) C = calloc(1, Dim * N_updates * sizeof(double));
|
|
double alpha = 1.0, beta = 0.0;
|
|
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
|
Dim, N_updates, Lds,
|
|
alpha, Slater_inv, Lds, Updates, Lds,
|
|
beta, C, N_updates);
|
|
|
|
// Construct B = 1 + V C : K x K
|
|
double* __restrict __attribute__ ((aligned(8))) B = malloc(sizeof *B * N_updates * N_updates);
|
|
#pragma omp parallel for collapse(2)
|
|
for (uint32_t i = 0; i < N_updates; i++) {
|
|
for (uint32_t j = 0; j < N_updates ; j++) {
|
|
const uint32_t row = Updates_index[i] - 1;
|
|
B[i * N_updates + j] = C[row * N_updates + j] + (i == j);
|
|
}
|
|
}
|
|
|
|
// Compute determinant by LU decomposition
|
|
int* pivot = malloc(sizeof *pivot * N_updates);
|
|
(void) LAPACKE_dgetrf(LAPACK_ROW_MAJOR, N_updates, N_updates, B, N_updates, pivot);
|
|
|
|
bool swap = false; uint32_t j = 0; double det = 1.0f;
|
|
#pragma omp parallel for reduction(+: j) reduction(*: det)
|
|
for (uint32_t i = 0; i < N_updates; i++) {
|
|
swap = (bool)(pivot[i] - (i + 1)); // swap = {0->false: no swap, >0->true: swap}
|
|
j += (uint32_t)swap; // count # of swaps
|
|
det *= B[i * (N_updates + 1)]; // prod. of diag elm. of B
|
|
}
|
|
if (fabs(det) < breakdown) return 1; // check if determinant of B is too close to zero. If so, exit early.
|
|
if (determinant) { // update det(Slater) if determinant != NULL
|
|
if ((j & 1) != 0) det = -det; // multiply det with -1 if # of swaps is odd
|
|
*determinant *= det;
|
|
}
|
|
|
|
// Compute B^{-1} with explicit formula for K x K inversion
|
|
(void) LAPACKE_dgetri(LAPACK_ROW_MAJOR, N_updates, B, N_updates, pivot);
|
|
|
|
// Construct D = V S^{-1} : K x LDS
|
|
double* __restrict __attribute__ ((aligned(8))) D = malloc(sizeof *D * N_updates * Lds);
|
|
#pragma omp parallel for collapse(2)
|
|
for (uint32_t i = 0; i < N_updates; i++) {
|
|
for (uint32_t j = 0; j < Lds; j++) {
|
|
const uint32_t row = Updates_index[i] - 1;
|
|
D[i * Lds + j] = Slater_inv[row * Lds + j];
|
|
}
|
|
}
|
|
|
|
// tmp1 = B^{-1} D : KxLDS = KxK X KxLDS : standard dgemm
|
|
double* __restrict __attribute__ ((aligned(8))) tmp1 = calloc(1, sizeof *tmp1 * N_updates * Lds);
|
|
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
|
|
N_updates, Lds, N_updates,
|
|
alpha, B, N_updates, D, Lds,
|
|
beta, tmp1, Lds);
|
|
|
|
// Compute S^{-1} - C * tmp1 : Dim x LDS : standard dgemm
|
|
alpha = -1.0, beta = 1.0;
|
|
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
|
|
Dim, Lds, N_updates,
|
|
alpha, C, N_updates, tmp1, Lds,
|
|
beta, Slater_inv, Lds);
|
|
|
|
free(C);
|
|
free(B);
|
|
free(D);
|
|
free(tmp1);
|
|
free(pivot);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_OMP_OFFLOAD_CUDA
|
|
uint32_t qmckl_woodbury_k_ompol_cuda_async(cublasHandle_t b_handle, cusolverDnHandle_t s_handle,
|
|
const uint64_t vLDS,
|
|
const uint64_t vDim,
|
|
const uint64_t N_updates,
|
|
const double* __restrict __attribute__((aligned(8))) Updates,
|
|
const uint64_t* __restrict Updates_index,
|
|
const double breakdown,
|
|
double* __restrict __attribute__((aligned(8))) Slater_inv,
|
|
double* __restrict determinant)
|
|
{
|
|
PUSH_RANGE("Kernel execution", 1)
|
|
const uint32_t Dim = vDim;
|
|
const uint32_t Lds = vLDS;
|
|
|
|
bool swap;
|
|
uint32_t j;
|
|
double alpha, beta, det;
|
|
int* __restrict pivot = malloc(sizeof *pivot * N_updates);
|
|
double* __restrict __attribute__((aligned(8))) C = malloc(sizeof *C * Dim * N_updates);
|
|
double* __restrict __attribute__((aligned(8))) B = malloc(sizeof *B * N_updates * N_updates);
|
|
double* __restrict __attribute__((aligned(8))) Binv = malloc(sizeof *Binv * N_updates * N_updates);
|
|
double* __restrict __attribute__((aligned(8))) D = malloc(sizeof *D * N_updates * Lds);
|
|
double* __restrict __attribute__((aligned(8))) T1 = malloc(sizeof *T1 * N_updates * Lds);
|
|
double* __restrict __attribute__((aligned(8))) T2 = malloc(sizeof *T2 * Dim * Lds);
|
|
|
|
int workspace_size = 0, *info = NULL;
|
|
double* __restrict __attribute__((aligned(8))) workspace = NULL;
|
|
cusolverDnDgetrf_bufferSize(s_handle, N_updates, N_updates, B, N_updates, &workspace_size);
|
|
// printf("SIZE OF CUSOLVER WORKSPACE: %d doubles of %lu byte = %lu byte\n", workspace_size, sizeof *workspace, sizeof *workspace * workspace_size);
|
|
workspace = malloc(sizeof *workspace * workspace_size);
|
|
|
|
PUSH_RANGE("Transfer data TO GPU", 2)
|
|
#pragma omp target enter data map(to: Updates[0:Lds*N_updates], \
|
|
Updates_index[0:N_updates], \
|
|
Slater_inv[0:Dim*Lds])
|
|
POP_RANGE
|
|
|
|
// Compute C <- S^{-1} U : Dim x K : standard dgemm
|
|
alpha = 1.0f, beta = 0.0f;
|
|
#pragma omp target enter data map(alloc: C[0:Dim*N_updates])
|
|
PUSH_RANGE("Compute C = S^{-1} U", 3)
|
|
#pragma omp target data use_device_ptr(Slater_inv, Updates, C)
|
|
{
|
|
(void) cublasDgemm_v2(b_handle,
|
|
CUBLAS_OP_T, CUBLAS_OP_N,
|
|
N_updates, Dim, Lds,
|
|
&alpha, Updates, Lds, Slater_inv, Lds,
|
|
&beta, C, N_updates);
|
|
}
|
|
#pragma omp target exit data map(delete: Updates[0:Lds*N_updates])
|
|
POP_RANGE
|
|
|
|
// Construct B <- 1 + V C : K x K
|
|
#pragma omp target enter data map(alloc: B[0:N_updates*N_updates])
|
|
PUSH_RANGE("Construct B = 1 + V C", 4)
|
|
#pragma omp target teams distribute parallel for collapse(2)
|
|
for (int i = 0; i < N_updates; ++i) {
|
|
for (int j = 0; j < N_updates; ++j) {
|
|
const uint32_t row = Updates_index[i] - 1;
|
|
B[i * N_updates + j] = C[row * N_updates + j] + (i == j);
|
|
}
|
|
}
|
|
POP_RANGE
|
|
|
|
// Compute det(B) via LU(B)
|
|
#pragma omp target enter data map(alloc: workspace[0:workspace_size], pivot[0:N_updates])
|
|
PUSH_RANGE("Compute LU(B)", 3)
|
|
#pragma omp target data use_device_ptr(B, workspace, pivot)
|
|
{
|
|
(void) cusolverDnDgetrf(s_handle, N_updates, N_updates, B, N_updates, workspace, pivot, info); // col-maj enforced, so res. is LU(B)^T
|
|
}
|
|
POP_RANGE
|
|
#pragma omp target exit data map(delete: workspace[0:workspace_size])
|
|
swap = false; j = 0; det = 1.0f;
|
|
PUSH_RANGE("Compute |det(B)| and count # of LU swaps", 4)
|
|
#pragma omp target teams distribute parallel for reduction(+: j) reduction(*: det)
|
|
for (uint32_t i = 0; i < N_updates; i++) {
|
|
swap = (bool)(pivot[i] - (i + 1)); // swap = {0->false: no swap, >0->true: swap}
|
|
j += (uint32_t)swap; // count # of swaps
|
|
det *= B[i * (N_updates + 1)]; // prod. of diag elm. of B
|
|
}
|
|
POP_RANGE
|
|
PUSH_RANGE("A bunch of branches: test break, det-sign", 4)
|
|
if (fabs(det) < breakdown) return 1; // check if determinant of B is too close to zero. If so, exit early.
|
|
if (determinant) { // update det(Slater) if determinant != NULL
|
|
if ((j & 1) != 0) det = -det; // multiply det with -1 if # of swaps is odd
|
|
*determinant *= det;
|
|
}
|
|
POP_RANGE
|
|
|
|
// Compute B^{-1} : initialise as I for solving BX=I
|
|
PUSH_RANGE("Allocate Binv ON GPU", 2)
|
|
#pragma omp target enter data map(alloc: Binv[0:N_updates*N_updates])
|
|
POP_RANGE
|
|
PUSH_RANGE("Construct B^{-1}=I", 4)
|
|
#pragma omp target teams distribute parallel for collapse(2)
|
|
for (int i = 0; i < N_updates; ++i) {
|
|
for (int j = 0; j < N_updates; ++j) {
|
|
Binv[i * N_updates + j] = (i == j);
|
|
}
|
|
}
|
|
POP_RANGE
|
|
|
|
#pragma omp target data use_device_ptr(B, pivot, Binv)
|
|
{
|
|
PUSH_RANGE("Compute B^{-1}", 3)
|
|
(void) cusolverDnDgetrs(s_handle, CUBLAS_OP_T, N_updates, N_updates, B,N_updates,
|
|
pivot, Binv, N_updates, info); // Needs op(B) = B^T because of line 403
|
|
POP_RANGE
|
|
}
|
|
PUSH_RANGE("Deallocate B, pivot ON GPU", 2)
|
|
#pragma omp target exit data map(delete: B[0:N_updates*N_updates], pivot[0:N_updates])
|
|
POP_RANGE
|
|
|
|
// Construct D = V S^{-1} : K x LDS
|
|
PUSH_RANGE("Allocate D ON GPU", 2)
|
|
#pragma omp target enter data map(alloc: D[0:N_updates*Lds])
|
|
POP_RANGE
|
|
PUSH_RANGE("Construct D = V S^{-1}", 4)
|
|
#pragma omp target teams distribute parallel for collapse(2)
|
|
for (uint32_t i = 0; i < N_updates; ++i) {
|
|
for (uint32_t j = 0; j < Lds; ++j) {
|
|
const uint32_t row = Updates_index[i] - 1;
|
|
D[i * Lds + j] = Slater_inv[row * Lds + j];
|
|
}
|
|
}
|
|
POP_RANGE
|
|
PUSH_RANGE("Deallocate Updates_index ON GPU", 2)
|
|
#pragma omp target exit data map(delete: Updates_index[0:N_updates])
|
|
POP_RANGE
|
|
|
|
// T1 <- B^{-1} D : KxLDS : standard dgemm
|
|
PUSH_RANGE("Allocate T1 ON GPU", 2)
|
|
#pragma omp target enter data map(alloc: T1[0:N_updates*Lds])
|
|
POP_RANGE
|
|
#pragma omp target data use_device_ptr(D, Binv, T1)
|
|
{
|
|
PUSH_RANGE("Compute T1 <- B^{-1} D", 3)
|
|
(void) cublasDgemm_v2(b_handle,
|
|
CUBLAS_OP_N,
|
|
CUBLAS_OP_T, // REMEMBER THIS IS Binv TRANSPOSED because of cusolverDnDgetrs CALL ON l.434 !!!
|
|
Lds, N_updates, N_updates,
|
|
&alpha, D, Lds, Binv, N_updates,
|
|
&beta, T1, Lds);
|
|
POP_RANGE
|
|
}
|
|
|
|
PUSH_RANGE("Deallocate D, Binv ON GPU", 2)
|
|
#pragma omp target exit data map(delete: D[0:N_updates*Lds], Binv[0:N_updates*N_updates])
|
|
POP_RANGE
|
|
|
|
// Compute S^{-1} <- S^{-1} - C * T1 : Dim x LDS : standard dgemm
|
|
alpha = -1.0f, beta = 1.0f;
|
|
#pragma omp target data use_device_ptr(T1, C, Slater_inv)
|
|
{
|
|
PUSH_RANGE("Compute S^{-1} <- S^{-1} - C * T1", 3)
|
|
(void) cublasDgemm_v2(b_handle,
|
|
CUBLAS_OP_N, CUBLAS_OP_N,
|
|
Dim, Lds, N_updates,
|
|
&alpha, T1, Lds, C, N_updates,
|
|
&beta, Slater_inv, Lds);
|
|
POP_RANGE
|
|
}
|
|
|
|
PUSH_RANGE("Deallocate T1, C ON GPU", 2)
|
|
#pragma omp target exit data map(delete: T1[0:N_updates*Lds], C[0:Dim*N_updates])
|
|
POP_RANGE
|
|
|
|
PUSH_RANGE("Update Slater_inv FROM GPU", 2)
|
|
#pragma omp target update from(Slater_inv[0:Dim*Lds])
|
|
POP_RANGE
|
|
|
|
PUSH_RANGE("Deallocate Slater_inv ON GPU", 2)
|
|
#pragma omp target exit data map(delete: Slater_inv[0:Dim*Lds])
|
|
POP_RANGE
|
|
|
|
free(pivot);
|
|
free(B);
|
|
free(Binv);
|
|
free(C);
|
|
free(D);
|
|
free(T1);
|
|
|
|
POP_RANGE
|
|
return 0;
|
|
}
|
|
|
|
uint32_t qmckl_woodbury_k_ompol_cuda_sync(cublasHandle_t b_handle, cusolverDnHandle_t s_handle,
|
|
const uint64_t vLDS,
|
|
const uint64_t vDim,
|
|
const uint64_t N_updates,
|
|
const double* __restrict __attribute__((aligned(8))) Updates,
|
|
const uint64_t* __restrict Updates_index,
|
|
const double breakdown,
|
|
double* __restrict __attribute__((aligned(8))) Slater_inv,
|
|
double* __restrict determinant) {
|
|
const uint32_t Dim = vDim;
|
|
const uint32_t Lds = vLDS;
|
|
|
|
uint32_t j;
|
|
double alpha, beta, det;
|
|
int *__restrict pivot = malloc(sizeof *pivot * N_updates);
|
|
double *__restrict __attribute__((aligned(8))) C = malloc(sizeof *C * Dim * N_updates);
|
|
double *__restrict __attribute__((aligned(8))) B = malloc(sizeof *B * N_updates * N_updates);
|
|
double *__restrict __attribute__((aligned(8))) Binv = malloc(sizeof *Binv * N_updates * N_updates);
|
|
double *__restrict __attribute__((aligned(8))) D = malloc(sizeof *D * N_updates * Lds);
|
|
double *__restrict __attribute__((aligned(8))) T1 = malloc(sizeof *T1 * N_updates * Lds);
|
|
double *__restrict __attribute__((aligned(8))) T2 = malloc(sizeof *T2 * Dim * Lds);
|
|
|
|
int workspace_size = 0, *info = NULL;
|
|
double *__restrict __attribute__((aligned(8))) workspace = NULL;
|
|
cusolverDnDgetrf_bufferSize(s_handle, N_updates, N_updates, B, N_updates, &workspace_size);
|
|
workspace = malloc(sizeof *workspace * workspace_size);
|
|
PUSH_RANGE("OpenMP OL Synchronous region", 1)
|
|
// PUSH_RANGE("Data init from host to device", 2)
|
|
#pragma omp target data map(to: Updates[0:Lds*N_updates], \
|
|
Updates_index[0:N_updates]) \
|
|
map(tofrom: Slater_inv[0:Dim*Lds]) \
|
|
map(alloc: C[0:Dim*N_updates], \
|
|
B[0:N_updates*N_updates], \
|
|
workspace[0:workspace_size], \
|
|
pivot[0:N_updates], \
|
|
Binv[0:N_updates*N_updates], \
|
|
D[0:N_updates*Lds], \
|
|
T1[0:N_updates*Lds])
|
|
// POP_RANGE
|
|
{
|
|
|
|
// Compute C <- S^{-1} U : Dim x K : standard dgemm
|
|
alpha = 1.0f, beta = 0.0f;
|
|
PUSH_RANGE("Compute C <- S^{-1} U", 3)
|
|
#pragma omp target data use_device_ptr(Slater_inv, Updates, C)
|
|
{
|
|
(void) cublasDgemm_v2(b_handle,
|
|
CUBLAS_OP_T, CUBLAS_OP_N,
|
|
N_updates, Dim, Lds,
|
|
&alpha, Updates, Lds, Slater_inv, Lds,
|
|
&beta, C, N_updates);
|
|
}
|
|
POP_RANGE
|
|
|
|
// Construct B <- 1 + V C : K x K
|
|
PUSH_RANGE("Construct B <- 1 + V C", 4)
|
|
#pragma omp target teams distribute parallel for collapse(2)
|
|
for (int i = 0; i < N_updates; ++i) {
|
|
for (int j = 0; j < N_updates; ++j) {
|
|
const uint32_t row = Updates_index[i] - 1;
|
|
B[i * N_updates + j] = C[row * N_updates + j] + (i == j);
|
|
}
|
|
}
|
|
POP_RANGE
|
|
|
|
// Compute det(B) via LU(B)
|
|
PUSH_RANGE("Compute LU(B)", 3)
|
|
#pragma omp target data use_device_ptr(B, workspace, pivot)
|
|
{
|
|
(void) cusolverDnDgetrf(s_handle, N_updates, N_updates, B, N_updates, workspace, pivot,
|
|
info); // col-maj enforced, so res. is LU(B)^T
|
|
}
|
|
POP_RANGE
|
|
|
|
det = 1.0f;
|
|
PUSH_RANGE("Compute |det(B)|", 4)
|
|
#pragma omp target teams distribute parallel for reduction(+: j) reduction(*: det)
|
|
for (uint32_t i = 0; i < N_updates; i++) {
|
|
det *= B[i * (N_updates + 1)]; // prod. of diag elm. of B
|
|
}
|
|
POP_RANGE
|
|
|
|
// Compute B^{-1} : initialise as I for solving BX=I
|
|
PUSH_RANGE("Construct and init B^{-1} as Id", 4)
|
|
#pragma omp target teams distribute parallel for collapse(2)
|
|
for (int i = 0; i < N_updates; ++i) {
|
|
for (int j = 0; j < N_updates; ++j) {
|
|
Binv[i * N_updates + j] = (i == j);
|
|
}
|
|
}
|
|
POP_RANGE
|
|
PUSH_RANGE("Compute B^{-1} from LU(B)", 3)
|
|
#pragma omp target data use_device_ptr(B, pivot, Binv)
|
|
{
|
|
(void) cusolverDnDgetrs(s_handle, CUBLAS_OP_T, N_updates, N_updates, B, N_updates,
|
|
pivot, Binv, N_updates, info); // Needs op(B) = B^T because of line 403
|
|
}
|
|
POP_RANGE
|
|
|
|
// Construct D = V S^{-1} : K x LDS
|
|
PUSH_RANGE("Construct D = V S^{-1}", 4)
|
|
#pragma omp target teams distribute parallel for collapse(2)
|
|
for (uint32_t i = 0; i < N_updates; ++i) {
|
|
for (uint32_t j = 0; j < Lds; ++j) {
|
|
const uint32_t row = Updates_index[i] - 1;
|
|
D[i * Lds + j] = Slater_inv[row * Lds + j];
|
|
}
|
|
}
|
|
POP_RANGE
|
|
|
|
// T1 <- B^{-1} D : KxLDS : standard dgemm
|
|
PUSH_RANGE("Compute T1 <- B^{-1} D", 3)
|
|
#pragma omp target data use_device_ptr(D, Binv, T1)
|
|
{
|
|
(void) cublasDgemm_v2(b_handle,
|
|
CUBLAS_OP_N,
|
|
CUBLAS_OP_T, // REMEMBER THIS IS Binv TRANSPOSED because of cusolverDnDgetrs CALL ON l.434 !!!
|
|
Lds, N_updates, N_updates,
|
|
&alpha, D, Lds, Binv, N_updates,
|
|
&beta, T1, Lds);
|
|
}
|
|
POP_RANGE
|
|
|
|
// Compute S^{-1} <- S^{-1} - C * T1 : Dim x LDS : standard dgemm
|
|
alpha = -1.0f, beta = 1.0f;
|
|
PUSH_RANGE("Compute S^{-1} <- S^{-1} - C * T1", 3)
|
|
#pragma omp target data use_device_ptr(T1, C, Slater_inv)
|
|
{
|
|
(void) cublasDgemm_v2(b_handle,
|
|
CUBLAS_OP_N, CUBLAS_OP_N,
|
|
Dim, Lds, N_updates,
|
|
&alpha, T1, Lds, C, N_updates,
|
|
&beta, Slater_inv, Lds);
|
|
}
|
|
POP_RANGE
|
|
}
|
|
POP_RANGE
|
|
|
|
free(pivot);
|
|
free(B);
|
|
free(Binv);
|
|
free(C);
|
|
free(D);
|
|
free(T1);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
uint32_t qmckl_slagel_splitting(
|
|
const uint64_t vLDS, const uint64_t vDim, uint64_t N_updates,
|
|
const double *__restrict __attribute__((aligned(8))) Updates,
|
|
const uint64_t *__restrict Updates_index, const double breakdown,
|
|
double *__restrict __attribute__((aligned(8))) Slater_inv,
|
|
double *__restrict __attribute__((aligned(8))) later_updates,
|
|
uint64_t *__restrict later_index, uint64_t *__restrict later,
|
|
double *__restrict determinant) {
|
|
|
|
const uint32_t Dim = vDim;
|
|
const uint32_t Lds = vLDS;
|
|
|
|
double __attribute__((aligned(8))) C[Lds];
|
|
double __attribute__((aligned(8))) D[Lds];
|
|
|
|
uint32_t l = 0;
|
|
// For each update
|
|
while (l < N_updates) {
|
|
// C = S^{-1} x U_l
|
|
for (uint32_t i = 0; i < Dim; i++) {
|
|
C[i] = 0.0;
|
|
#pragma ivdep
|
|
#pragma vector aligned
|
|
for (uint32_t j = 0; j < Lds; j++) {
|
|
C[i] += Slater_inv[i * Lds + j] * Updates[l * Lds + j]; // regular mat-vec product, but actually working on S_inv^T * U_l.
|
|
}
|
|
}
|
|
|
|
// Denominator
|
|
const int cui = Updates_index[l] - 1;
|
|
double den = 1.0 + C[cui];
|
|
// printf("test breakdown = %f, den = %f, C[cui] = %f, cui = %d\n", breakdown, fabs(den), C[cui], cui);
|
|
if (fabs(den) < breakdown) { // Here is decided to split the update, or not.
|
|
// printf("Split! breakdown = %f\n", breakdown);
|
|
n_splits += 1;
|
|
|
|
// U_l = U_l / 2: split the update in 2 equal halves and save the second halve
|
|
// in later_updates
|
|
#pragma ivdep
|
|
#pragma vector aligned
|
|
for (uint32_t i = 0; i < Lds; i++) {
|
|
later_updates[*later * Lds + i] = Updates[l * Lds + i] / 2.0;
|
|
C[i] /= 2.0;
|
|
}
|
|
later_index[*later] = Updates_index[l];
|
|
(*later)++;
|
|
|
|
den = 1.0 + C[cui];
|
|
} // From here onwards we continue with applying the first halve of the update to Slater_inv
|
|
double iden = 1.0 / den;
|
|
|
|
if (determinant) *determinant *= den;
|
|
|
|
// D = v^T x S^{-1} : 1 x LDS
|
|
#pragma ivdep
|
|
#pragma vector aligned
|
|
for (uint32_t j = 0; j < Lds; j++) {
|
|
D[j] = Slater_inv[cui * Lds + j];
|
|
}
|
|
|
|
// S^{-1} = S^{-1} - C x D / den
|
|
for (uint32_t i = 0; i < Dim; i++) {
|
|
#pragma ivdep
|
|
#pragma vector aligned
|
|
for (uint32_t j = 0; j < Lds; j++) {
|
|
const double update = C[i] * D[j] * iden;
|
|
Slater_inv[i * Lds + j] -= update;
|
|
}
|
|
}
|
|
l += 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t qmckl_sherman_morrison_splitting(
|
|
const uint64_t vLDS, const uint64_t vDim, const uint64_t N_updates,
|
|
const double *__restrict __attribute__((aligned(8))) Updates,
|
|
const uint64_t *__restrict Updates_index, const double breakdown,
|
|
double *__restrict __attribute__((aligned(8))) Slater_inv,
|
|
double *__restrict determinant) {
|
|
|
|
const uint32_t Dim = vDim;
|
|
const uint32_t Lds = vLDS;
|
|
|
|
double __attribute__((aligned(8))) later_updates[Lds * N_updates];
|
|
uint64_t later_index[N_updates];
|
|
uint64_t later = 0;
|
|
// uint32_t rc;
|
|
|
|
(void) qmckl_slagel_splitting(Lds, Dim, N_updates, Updates, Updates_index,
|
|
breakdown, Slater_inv, later_updates, later_index,
|
|
&later, determinant);
|
|
// rc = qmckl_slagel_splitting(Lds, Dim, N_updates, Updates, Updates_index,
|
|
// breakdown, Slater_inv, later_updates, later_index,
|
|
// &later, determinant);
|
|
// if (rc != 0) printf("Something when catastrophically wrong in QMCKL_SLAGEL_SPLITTING\n");
|
|
|
|
if (later > 0) {
|
|
recursive_calls++;
|
|
// printf("Later > 0\n");
|
|
(void) qmckl_sherman_morrison_splitting(Lds, Dim, later, later_updates,
|
|
later_index, breakdown, Slater_inv,
|
|
determinant);
|
|
|
|
// rc = qmckl_sherman_morrison_splitting(Lds, Dim, later, later_updates,
|
|
// later_index, breakdown, Slater_inv,
|
|
// determinant);
|
|
// if (rc != 0) printf("Something when catastrophically wrong in QMCKL_SHERMAN_MORRISON_SPLITTING\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t qmckl_sherman_morrison_smw32s(
|
|
const uint64_t vLDS, const uint64_t vDim, const uint64_t N_updates,
|
|
const double *__restrict __attribute__((aligned(8))) Updates,
|
|
const uint64_t *__restrict Updates_index, const double breakdown,
|
|
double *__restrict __attribute__((aligned(8))) Slater_inv,
|
|
double *__restrict determinant) {
|
|
|
|
const uint32_t Dim = vDim;
|
|
const uint32_t Lds = vLDS;
|
|
|
|
double __attribute__((aligned(8))) later_updates[Lds * N_updates];
|
|
uint64_t later_index[N_updates];
|
|
uint64_t later = 0;
|
|
uint32_t rc;
|
|
|
|
if (N_updates == 4) { // Special case for 4 rank-1 updates: 2+2
|
|
rc = qmckl_woodbury_2(Lds, Dim, Updates, Updates_index,
|
|
breakdown, Slater_inv, determinant);
|
|
if (rc != 0) { // Send the entire block to slagel_splitting
|
|
block_fail += 1;
|
|
uint64_t l = 0;
|
|
rc = qmckl_slagel_splitting(Lds, Dim, 2, Updates,
|
|
Updates_index, breakdown, Slater_inv,
|
|
later_updates + (Lds * later),
|
|
later_index + later, &l, determinant);
|
|
later += l;
|
|
}
|
|
rc = qmckl_woodbury_2(Lds, Dim, &Updates[2*Lds], &Updates_index[2],
|
|
breakdown, Slater_inv, determinant);
|
|
if (rc != 0) { // Send the entire block to slagel_splitting
|
|
block_fail += 1;
|
|
uint64_t l = 0;
|
|
rc = qmckl_slagel_splitting(Lds, Dim, 2, &Updates[2*Lds],
|
|
&Updates_index[2], breakdown, Slater_inv,
|
|
later_updates + (Lds * later),
|
|
later_index + later, &l, determinant);
|
|
later += l;
|
|
}
|
|
if (later > 0) {
|
|
recursive_calls++;
|
|
rc = qmckl_sherman_morrison_splitting(Lds, Dim, later, later_updates,
|
|
later_index, breakdown, Slater_inv,
|
|
determinant);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// And for the other cases != 4, 6
|
|
// Apply first 3*n_of_3blocks updates in n_of_3blocks blocks of 3 updates with
|
|
// Woodbury 3x3 kernel
|
|
uint32_t n_of_3blocks = N_updates / 3;
|
|
uint32_t remainder = N_updates % 3;
|
|
uint32_t length_3block = 3 * Lds;
|
|
|
|
if (n_of_3blocks > 0) {
|
|
for (uint32_t i = 0; i < n_of_3blocks; i++) {
|
|
const double *Updates_3block = &Updates[i * length_3block];
|
|
const uint64_t *Updates_index_3block = &Updates_index[i * 3];
|
|
rc = qmckl_woodbury_3(Lds, Dim, Updates_3block, Updates_index_3block,
|
|
breakdown, Slater_inv, determinant);
|
|
if (rc != 0) { // Send the entire block to slagel_splitting
|
|
// printf("QMCKL_WOODBURY_3 failed. Sending to QMCKL_SLAGEL_SPLITTING\n");
|
|
block_fail += 1;
|
|
uint64_t l = 0;
|
|
rc = qmckl_slagel_splitting(Lds, Dim, 3, Updates_3block,
|
|
Updates_index_3block, breakdown, Slater_inv,
|
|
later_updates + (Lds * later),
|
|
later_index + later, &l, determinant);
|
|
// if (rc != 0) printf("Something when catastrophically wrong in QMCKL_SLAGEL_SPLITTING\n");
|
|
later += l;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Apply last remaining block of 2 updates with Woodbury 2x2 kernel
|
|
if (remainder == 2) {
|
|
const double *Updates_2block = &Updates[n_of_3blocks * length_3block];
|
|
const uint64_t *Updates_index_2block = &Updates_index[3 * n_of_3blocks];
|
|
rc = qmckl_woodbury_2(Lds, Dim, Updates_2block, Updates_index_2block,
|
|
breakdown, Slater_inv, determinant);
|
|
if (rc != 0) { // Send the entire block to slagel_splitting
|
|
// printf("QMCKL_WOODBURY_2 failed. Sending to QMCKL_SLAGEL_SPLITTING\n");
|
|
block_fail += 1;
|
|
uint64_t l = 0;
|
|
rc = qmckl_slagel_splitting(Lds, Dim, 2, Updates_2block,
|
|
Updates_index_2block, breakdown, Slater_inv,
|
|
later_updates + (Lds * later),
|
|
later_index + later, &l, determinant);
|
|
// if (rc != 0) printf("Something when catastrophically wrong in QMCKL_SLAGEL_SPLITTING\n");
|
|
later += l;
|
|
}
|
|
}
|
|
|
|
// Apply last remaining update with slagel_splitting
|
|
if (remainder == 1) {
|
|
// // printf("Sending single update to QMCKL_SLAGEL_SPLITTING\n");
|
|
const double *Updates_1block = &Updates[n_of_3blocks * length_3block];
|
|
const uint64_t *Updates_index_1block = &Updates_index[3 * n_of_3blocks];
|
|
uint64_t l = 0;
|
|
rc = qmckl_slagel_splitting(Lds, Dim, 1, Updates_1block,
|
|
Updates_index_1block, breakdown, Slater_inv,
|
|
later_updates + (Lds * later),
|
|
later_index + later, &l, determinant);
|
|
// if (rc != 0) printf("Something when catastrophically wrong in QMCKL_SLAGEL_SPLITTING\n");
|
|
later += l;
|
|
}
|
|
|
|
if (later > 0) {
|
|
recursive_calls++;
|
|
// printf("Sending remaining updates to QMCKL_SHERMAN_MORRISON_SPLITTING\n");
|
|
rc = qmckl_sherman_morrison_splitting(Lds, Dim, later, later_updates,
|
|
later_index, breakdown, Slater_inv,
|
|
determinant);
|
|
// if (rc != 0) printf("Something when catastrophically wrong in QMCKL_SHERMAN_MORRISON_SPLITTING\n");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Sherman Morrison, leaving zero denominators for later
|
|
uint32_t qmckl_sherman_morrison_later(
|
|
const uint64_t vLDS, const uint64_t vDim, const uint64_t N_updates,
|
|
const double *__restrict __attribute__((aligned(8))) Updates,
|
|
const uint64_t *__restrict Updates_index, const double breakdown,
|
|
double *__restrict __attribute__((aligned(8))) Slater_inv,
|
|
double *__restrict determinant) {
|
|
|
|
const uint32_t Dim = vDim;
|
|
const uint32_t Lds = vLDS;
|
|
|
|
double __attribute__((aligned(8))) C[Dim];
|
|
double __attribute__((aligned(8))) D[Lds];
|
|
|
|
double __attribute__((aligned(8))) later_updates[Lds * N_updates];
|
|
uint64_t later_index[N_updates];
|
|
uint64_t later = 0;
|
|
|
|
uint32_t l = 0;
|
|
// For each update
|
|
while (l < N_updates) {
|
|
|
|
// C = A^{-1} x U_l
|
|
for (uint32_t i = 0; i < Dim; i++) {
|
|
C[i] = 0.0;
|
|
#pragma ivdep
|
|
#pragma vector aligned
|
|
for (uint32_t j = 0; j < Lds; j++) {
|
|
C[i] += Slater_inv[i * Lds + j] * Updates[l * Lds + j]; // regular mat-vec product, but actually working on S_inv^T * U_l.
|
|
}
|
|
}
|
|
|
|
// Denominator
|
|
const int cui = Updates_index[l] - 1;
|
|
double den = 1.0 + C[cui];
|
|
if (fabs(den) < breakdown) {
|
|
#pragma ivdep
|
|
#pragma vector aligned
|
|
// for (uint32_t i = 0; i < Dim; i++) {
|
|
for (uint32_t i = 0; i < Lds; i++) {
|
|
later_updates[later * Lds + i] = Updates[l * Lds + i];
|
|
}
|
|
later_index[later] = Updates_index[l];
|
|
later++;
|
|
l += 1;
|
|
continue;
|
|
}
|
|
double iden = 1.0 / den;
|
|
|
|
if (determinant) *determinant *= den;
|
|
|
|
// D = v^T x A^{-1}
|
|
#pragma ivdep
|
|
#pragma vector aligned
|
|
for (uint32_t j = 0; j < Lds; j++) {
|
|
D[j] = Slater_inv[cui * Lds + j];
|
|
}
|
|
|
|
// S^{-1} = S^{-1} - C x D / den
|
|
for (uint32_t i = 0; i < Dim; i++) {
|
|
#pragma ivdep
|
|
#pragma vector aligned
|
|
for (uint32_t j = 0; j < Lds; j++) {
|
|
const double update = C[i] * D[j] * iden;
|
|
Slater_inv[i * Lds + j] -= update;
|
|
}
|
|
}
|
|
l += 1;
|
|
}
|
|
|
|
if (later == N_updates) { // If all the updates have failed, exit early with an error
|
|
return 1;
|
|
}
|
|
else if (later > 0) { // If some have failed, make a recursive call
|
|
recursive_calls++;
|
|
(void) qmckl_sherman_morrison_later(Lds, Dim, later, later_updates,
|
|
later_index, breakdown, Slater_inv, determinant);
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
// Inplace inverse n x n matrix A.
|
|
// returns:
|
|
// ret = 0 on success
|
|
// ret < 0 illegal argument value
|
|
// ret > 0 singular matrix
|
|
lapack_int inverse(double *a, uint64_t m, uint64_t n) {
|
|
int pivot[m + 1];
|
|
lapack_int ret;
|
|
ret = LAPACKE_dgetrf(LAPACK_ROW_MAJOR, m, n, a, n, pivot);
|
|
if (ret != 0) return ret;
|
|
ret = LAPACKE_dgetri(LAPACK_ROW_MAJOR, n, a, n, pivot);
|
|
return ret;
|
|
}
|