#include "hdf5/serial/H5Cpp.h" #include "hdf5/serial/hdf5.h" #include "Helpers.hpp" #include "SM_Maponi.hpp" #include "SM_Standard.hpp" #include "Woodbury.hpp" #include "SMWB.hpp" #include #include #define PERF // #define STATUS // #define RESIDUAL #ifdef PERF unsigned int repetition_number; #endif using namespace H5; // #define DEBUG const H5std_string FILE_NAME("dataset.hdf5"); void read_int(H5File file, std::string key, unsigned int *data) { DataSet ds = file.openDataSet(key); ds.read(data, PredType::STD_U32LE); ds.close(); } void read_double(H5File file, std::string key, double *data) { DataSet ds = file.openDataSet(key); ds.read(data, PredType::IEEE_F64LE); ds.close(); } int test_cycle(H5File file, int cycle, std::string version, double tolerance) { /* Read the data */ std::string group = "cycle_" + std::to_string(cycle); unsigned int dim, nupdates, col, i, j; read_int(file, group + "/slater_matrix_dim", &dim); read_int(file, group + "/nupdates", &nupdates); double *slater_matrix = new double[dim * dim]; read_double(file, group + "/slater_matrix", slater_matrix); double *slater_inverse = new double[dim * dim]; read_double(file, group + "/slater_inverse", slater_inverse); unsigned int *col_update_index = new unsigned int[nupdates]; read_int(file, group + "/col_update_index", col_update_index); double *updates = new double[nupdates * dim]; read_double(file, group + "/updates", updates); double *u = new double[nupdates * dim]; /* Test */ #ifdef DEBUG2 showMatrix(slater_inverse, dim, "OLD Inverse"); #endif // Transform replacement updates in 'updates[]' into additive updates in 'u[]' for (j = 0; j < nupdates; j++) { for (i = 0; i < dim; i++) { col = col_update_index[j]; u[i + j * dim] = updates[i + j * dim] - slater_matrix[i * dim + (col - 1)]; slater_matrix[i * dim + (col - 1)] = updates[i + j * dim]; } } #ifdef DEBUG2 showMatrix(slater_matrix, dim, "OLD Slater"); showMatrix(u, dim, "Updates"); #endif #ifdef PERF #ifdef DEBUG1 std::cerr << "# of reps. = " << repetition_number << std::endl; #endif // DEBUG1 double *slater_inverse_nonpersistent = new double[dim * dim]; if (version == "sm1") { for (unsigned int i = 0; i < repetition_number; i++) { std::memcpy(slater_inverse_nonpersistent, slater_inverse, dim * dim * sizeof(double)); SM1(slater_inverse_nonpersistent, dim, nupdates, u, col_update_index); } } else if (version == "sm2") { for (unsigned int i = 0; i < repetition_number; i++) { std::memcpy(slater_inverse_nonpersistent, slater_inverse, dim * dim * sizeof(double)); SM2(slater_inverse_nonpersistent, dim, nupdates, u, col_update_index); } } else if (version == "sm3") { for (unsigned int i = 0; i < repetition_number; i++) { std::memcpy(slater_inverse_nonpersistent, slater_inverse, dim * dim * sizeof(double)); SM3(slater_inverse_nonpersistent, dim, nupdates, u, col_update_index); } } else if (version == "sm4") { for (unsigned int i = 0; i < repetition_number; i++) { std::memcpy(slater_inverse_nonpersistent, slater_inverse, dim * dim * sizeof(double)); SM4(slater_inverse_nonpersistent, dim, nupdates, u, col_update_index); } } else if (version == "wb2") { for (unsigned int i = 0; i < repetition_number; i++) { std::memcpy(slater_inverse_nonpersistent, slater_inverse, dim * dim * sizeof(double)); WB2(slater_inverse_nonpersistent, dim, u, col_update_index); } } else if (version == "wb3") { for (unsigned int i = 0; i < repetition_number; i++) { std::memcpy(slater_inverse_nonpersistent, slater_inverse, dim * dim * sizeof(double)); WB3(slater_inverse_nonpersistent, dim, u, col_update_index); } } else if (version == "smwb1") { for (unsigned int i = 0; i < repetition_number; i++) { std::memcpy(slater_inverse_nonpersistent, slater_inverse, dim * dim * sizeof(double)); SMWB1(slater_inverse_nonpersistent, dim, nupdates, u, col_update_index); } } else if (version == "smwb4") { for (unsigned int i = 0; i < repetition_number; i++) { std::memcpy(slater_inverse_nonpersistent, slater_inverse, dim * dim * sizeof(double)); SMWB4(slater_inverse_nonpersistent, dim, nupdates, u, col_update_index); } #ifdef MKL } else if (version == "lapack") { for (unsigned int i = 0; i < repetition_number; i++) { std::memcpy(slater_inverse_nonpersistent, slater_matrix, dim * dim * sizeof(double)); inverse(slater_inverse_nonpersistent, dim); } #endif // MKL } else { std::cerr << "Unknown version " << version << std::endl; exit(1); } std::memcpy(slater_inverse, slater_inverse_nonpersistent, dim * dim * sizeof(double)); delete[] slater_inverse_nonpersistent; #else // No performance measurements repetition if (version == "maponia3") { MaponiA3(slater_inverse, dim, nupdates, u, col_update_index); } else if (version == "maponia3s") { MaponiA3S(slater_inverse, dim, nupdates, u, col_update_index); } else if (version == "sm1") { SM1(slater_inverse, dim, nupdates, u, col_update_index); } else if (version == "sm2") { SM2(slater_inverse, dim, nupdates, u, col_update_index); } else if (version == "sm3") { SM3(slater_inverse, dim, nupdates, u, col_update_index); } else if (version == "sm4") { SM4(slater_inverse, dim, nupdates, u, col_update_index); } else if (version == "wb2") { WB2(slater_inverse, dim, u, col_update_index); } else if (version == "wb3") { WB3(slater_inverse, dim, u, col_update_index); } else if (version == "smwb1") { SMWB1(slater_inverse, dim, nupdates, u, col_update_index); // } else if (version == "smwb2") { // SMWB2(slater_inverse, dim, nupdates, u, col_update_index); // } else if (version == "smwb3") { // SMWB3(slater_inverse, dim, nupdates, u, col_update_index); } else if (version == "smwb4") { SMWB4(slater_inverse, dim, nupdates, u, col_update_index); #ifdef MKL } else if (version == "lapack") { memcpy(slater_inverse, slater_matrix, dim * dim * sizeof(double)); inverse(slater_inverse, dim); #endif // MKL } else { std::cerr << "Unknown version " << version << std::endl; exit(1); } #endif // PERF #ifdef DEBUG2 showMatrix(slater_matrix, dim, "NEW Slater"); showMatrix(slater_inverse, dim, "NEW Inverse"); #endif double *res = new double[dim * dim]{0}; matMul(slater_matrix, slater_inverse, res, dim); bool ok = is_identity(res, dim, tolerance); double res_max = residual_max(res, dim); double res2 = residual_frobenius2(res, dim); #ifdef RESIDUAL std::cout << "Residual = " << version << " " << cycle << " " << res_max << " " << res2 << std::endl; #endif #ifdef DEBUG2 showMatrix(res, dim, "Result"); #endif delete[] res, updates, u, col_update_index, slater_matrix, slater_inverse; return ok; } int main(int argc, char **argv) { #ifdef PERF if (argc != 5) { std::cerr << "Execute from within 'datasets/'" << std::endl; std::cerr << "usage: test_h5 " << std::endl; return 1; } #else if (argc != 4) { std::cerr << "Execute from within 'datasets/'" << std::endl; std::cerr << "usage: test_h5 " << std::endl; return 1; } #endif std::string version(argv[1]); std::string cyclefile_name(argv[2]); std::ifstream cyclefile(cyclefile_name); std::vector cycles; unsigned int cycle; while (cyclefile >> cycle) cycles.push_back(cycle); double tolerance = std::stod(argv[3]); H5File file(FILE_NAME, H5F_ACC_RDONLY); #ifdef PERF repetition_number = std::stoi(argv[4]); #endif bool ok; for (auto & cycle : cycles) { ok = test_cycle(file, cycle, version, tolerance); #ifdef STATUS if (ok) { std::cerr << "ok -- cycle " << std::to_string(cycle) << std::endl; } else { std::cerr << "failed -- cycle " << std::to_string(cycle) << std::endl; } #endif } return ok; }