#include "hdf5/serial/H5Cpp.h" #include "hdf5/serial/hdf5.h" #include "Helpers.hpp" #include "qmckl.h" #include #include #include #define PERF #ifdef PERF unsigned int repetition_number; #endif const H5std_string FILE_NAME("dataset.hdf5"); void read_int(H5::H5File file, std::string key, unsigned int *data) { H5::DataSet ds = file.openDataSet(key); ds.read(data, H5::PredType::STD_U32LE); ds.close(); } void read_double(H5::H5File file, std::string key, double *data) { H5::DataSet ds = file.openDataSet(key); ds.read(data, H5::PredType::IEEE_F64LE); ds.close(); } int test_cycle(H5::H5File file, int cycle, std::string version, double breakdown, double tolerance) { /* Read the data */ std::string group = "cycle_" + std::to_string(cycle); unsigned int col, i, j; unsigned int dim_32, nupdates_32; uint64_t dim, nupdates; read_int(file, group + "/slater_matrix_dim", &dim_32); read_int(file, group + "/nupdates", &nupdates_32); dim = dim_32; nupdates = nupdates_32; double *slater_matrix = new double[dim * dim]; read_double(file, group + "/slater_matrix", slater_matrix); double *slater_inverse = new double[dim * dim]; read_double(file, group + "/slater_inverse", slater_inverse); unsigned int *temp = new unsigned int[nupdates]; uint64_t *col_update_index = new uint64_t[nupdates]; read_int(file, group + "/col_update_index", temp); for (i = 0; i < nupdates; i++) { col_update_index[i] = temp[i]; } delete[] temp; double *updates = new double[nupdates * dim]; read_double(file, group + "/updates", updates); double *u = new double[nupdates * dim]; /* Test */ // Transform replacement updates in 'updates[]' into additive updates in 'u[]' for (j = 0; j < nupdates; j++) { for (i = 0; i < dim; i++) { col = col_update_index[j]; u[i + j * dim] = updates[i + j * dim] - slater_matrix[i * dim + (col - 1)]; slater_matrix[i * dim + (col - 1)] = updates[i + j * dim]; } } delete[] updates; qmckl_context context = qmckl_context_create(); qmckl_exit_code rc; #ifdef PERF std::cout << "# of reps. = " << repetition_number << std::endl; double *slater_inverse_nonpersistent = new double[dim * dim]; if (version == "sm1") { for (unsigned int i = 0; i < repetition_number; i++) { memcpy(slater_inverse_nonpersistent, slater_inverse, dim * dim * sizeof(double)); rc = qmckl_sherman_morrison_c(context, dim, nupdates, u, col_update_index, breakdown, slater_inverse_nonpersistent); } } else if (version == "wb2") { for (unsigned int i = 0; i < repetition_number; i++) { memcpy(slater_inverse_nonpersistent, slater_inverse, dim * dim * sizeof(double)); rc = qmckl_woodbury_2_c(context, dim, u, col_update_index, breakdown, slater_inverse_nonpersistent); } } else if (version == "wb3") { for (unsigned int i = 0; i < repetition_number; i++) { memcpy(slater_inverse_nonpersistent, slater_inverse, dim * dim * sizeof(double)); rc = qmckl_woodbury_3_c(context, dim, u, col_update_index, breakdown, slater_inverse_nonpersistent); } } else if (version == "sm2") { for (unsigned int i = 0; i < repetition_number; i++) { memcpy(slater_inverse_nonpersistent, slater_inverse, dim * dim * sizeof(double)); rc = qmckl_sherman_morrison_splitting_c(context, dim, nupdates, u, col_update_index, breakdown, slater_inverse_nonpersistent); } } else if (version == "wb2s") { for (unsigned int i = 0; i < repetition_number; i++) { memcpy(slater_inverse_nonpersistent, slater_inverse, dim * dim * sizeof(double)); rc = qmckl_sherman_morrison_smw2s_c(context, dim, nupdates, u, col_update_index, breakdown, slater_inverse_nonpersistent); } } else if (version == "wb3s") { for (unsigned int i = 0; i < repetition_number; i++) { memcpy(slater_inverse_nonpersistent, slater_inverse, dim * dim * sizeof(double)); rc = qmckl_sherman_morrison_smw3s_c(context, dim, nupdates, u, col_update_index, breakdown, slater_inverse_nonpersistent); } } else if (version == "wb32s") { for (unsigned int i = 0; i < repetition_number; i++) { memcpy(slater_inverse_nonpersistent, slater_inverse, dim * dim * sizeof(double)); rc = qmckl_sherman_morrison_smw32s_c(context, dim, nupdates, u, col_update_index, breakdown, slater_inverse_nonpersistent); } } else { std::cerr << "Unknown version " << version << std::endl; exit(1); } std::memcpy(slater_inverse, slater_inverse_nonpersistent, dim * dim * sizeof(double)); delete[] slater_inverse_nonpersistent; #else // No performance measurements repetition if (version == "sm1") { qmckl_context context; context = qmckl_context_create(); qmckl_exit_code rc; rc = qmckl_sherman_morrison_c(context, dim, nupdates, u, col_update_index, breakdown, slater_inverse); } else if (version == "wb2") { qmckl_context context; context = qmckl_context_create(); qmckl_exit_code rc; rc = qmckl_woodbury_2_c(context, dim, u, col_update_index, breakdown, slater_inverse); } else if (version == "wb3") { qmckl_context context; context = qmckl_context_create(); qmckl_exit_code rc; rc = qmckl_woodbury_3_c(context, dim, u, col_update_index, breakdown, slater_inverse); } else { std::cerr << "Unknown version " << version << std::endl; exit(1); } #endif // PERF delete[] u, col_update_index; rc = qmckl_context_destroy(context); double *res = new double[dim * dim]{0}; matMul2(slater_matrix, slater_inverse, res, dim_32, dim_32, dim_32); bool ok = is_identity(res, dim, tolerance); double res_max = residual_max(res, dim); double res2 = residual_frobenius2(res, dim); std::cout << "Residual = " << version << " " << cycle << " " << res_max << " " << res2 << std::endl; delete[] res, slater_matrix, slater_inverse; return ok; } int main(int argc, char **argv) { #ifdef PERF if (argc != 7) { std::cerr << "Execute from within 'datasets/'" << std::endl; std::cerr << "usage: test_h5 " << std::endl; return 1; } #else if (argc != 6) { std::cerr << "Execute from within 'datasets/'" << std::endl; std::cerr << "usage: test_h5 " << std::endl; return 1; } #endif std::string version(argv[1]); int start_cycle = std::stoi(argv[2]); int stop_cycle = std::stoi(argv[3]); double breakdown = std::stod(argv[4]); double tolerance = std::stod(argv[5]); H5::H5File file(FILE_NAME, H5F_ACC_RDONLY); #ifdef PERF repetition_number = std::stoi(argv[6]); #endif bool ok; for (int cycle = start_cycle; cycle < stop_cycle + 1; cycle++) { ok = test_cycle(file, cycle, version, breakdown, tolerance); if (ok) { std::cerr << "ok -- cycle " << std::to_string(cycle) << std::endl; } else { std::cerr << "failed -- cycle " << std::to_string(cycle) << std::endl; } } return ok; }