Add CI dataset and the tool to generate it.

Since the dataset must be accessible from the CI runner, the best
solution is probably to commit a small dataset containing only the
required cycles. It's included in this commit, and can be generated by
extract-from-h5.py using the same cycles list as the one used by
vfc_test_h5.cpp.

Moreover, the probes exported by vfc_test_h5.cpp are now 0-padded, which
will result in a better sorting in the results.
This commit is contained in:
Aurélien Delval 2021-05-03 13:59:43 +02:00
parent 18d1e2b785
commit d81777e347
3 changed files with 81 additions and 3 deletions

BIN
datasets/ci_dataset.hdf5 Normal file

Binary file not shown.

View File

@ -19,7 +19,7 @@
using namespace H5; using namespace H5;
// #define DEBUG // #define DEBUG
const H5std_string FILE_NAME( "datasets/dataset.hdf5" ); const H5std_string FILE_NAME( "datasets/ci_dataset.hdf5" );
double residual_max(double * A, unsigned int Dim) { double residual_max(double * A, unsigned int Dim) {
double max = 0.0; double max = 0.0;
@ -79,6 +79,12 @@ int test_cycle(H5File file, int cycle, std::string version, vfc_probes * probes)
std::string group = "cycle_" + std::to_string(cycle); std::string group = "cycle_" + std::to_string(cycle);
// This will result in the same string as group but with the cycle number
// being zero-padded. This is used when calling vfc_put_probe later on.
std::string zero_padded_group = std::to_string(cycle);
zero_padded_group = "cycle_" +
std::string(5 - zero_padded_group.length(), '0') + zero_padded_group;
try{ try{
file.openGroup(group); file.openGroup(group);
} catch(H5::Exception& e){ } catch(H5::Exception& e){
@ -155,8 +161,8 @@ int test_cycle(H5File file, int cycle, std::string version, vfc_probes * probes)
showMatrix(res, dim, "Result"); showMatrix(res, dim, "Result");
#endif #endif
vfc_put_probe(probes, &(group)[0], &("res_max_" + version)[0], res_max); vfc_put_probe(probes, &(zero_padded_group)[0], &("res_max_" + version)[0], res_max);
vfc_put_probe(probes, &(group)[0], &("res2_" + version)[0], res2); vfc_put_probe(probes, &(zero_padded_group)[0], &("res2_" + version)[0], res2);
delete [] res, updates, u, col_update_index, delete [] res, updates, u, col_update_index,
slater_matrix, slater_inverse; slater_matrix, slater_inverse;

72
tools/extract-from-h5.py Normal file
View File

@ -0,0 +1,72 @@
#!/usr/bin/env python
import h5py
import sys
# Helper script to extract a few cycles from a large dataset. This will be
# especially useful for the Verificarlo CI, since vfc_ci_cycles.txt can be
# used to both extract (with this script), and read the small dataset (in a CI
# run).
# Parse arguments
if len(sys.argv) != 4:
sys.stderr.write(
"Error: Wrong number of arguments. Usage : extract_h5.py "\
"<source_dataset.hdf5> <cycles_list.txt> <destination_dataset.hdf5>\n"
)
exit(1)
source_dataset_path = sys.argv[1]
cycles_list_path = sys.argv[2]
destination_dataset_path = sys.argv[3]
# Read the cycles list
cycles_list = []
try:
f = open(cycles_list_path)
for line in f:
cycles_list.extend([cycle for cycle in line.split()])
except IOError:
sys.stderr.write("Error: Could not read " + cycles_list_path + "\n")
exit(1)
finally:
f.close()
# Read the source dataset, and extract the cycles to the destination dataset
try:
fs = h5py.File(source_dataset_path, "r")
except IOError:
sys.stderr.write("Error: Could not read " + source_dataset_path + "\n")
exit(1)
fd = h5py.File(destination_dataset_path, "w")
# Copy cycles groups
groups = [
"slater_matrix_dim",
"nupdates",
"slater_matrix",
"slater_inverse",
"col_update_index",
"updates"
]
for cycle in cycles_list:
cycle_name = "cycle_" + cycle
new_cycle = fd.create_group(cycle_name)
# Copy all datasets
for group_name in groups:
fs.copy(cycle_name + "/" + group_name, new_cycle)
print("Dataset successfully exported to %s" % source_dataset_path)