mirror of
https://github.com/TREX-CoE/Sherman-Morrison.git
synced 2025-01-13 06:28:35 +01:00
Merge pull request #26 from fmgjcoppens/mat_properties
- Added python program that computes general properties of a given Slater-matrix...
This commit is contained in:
commit
bc1fcc1ce9
@ -30,6 +30,12 @@ case $ENV in
|
||||
export HDF5_CXXLINKER=clang++
|
||||
export ENV=LLVM
|
||||
;;
|
||||
vfc)
|
||||
export HDF5_CXX=clang++
|
||||
export HDF5_CXXLINKER=clang++
|
||||
export ENV=LLVM
|
||||
export VFC_BACKENDS="libinterflop_ieee.so --count-op"
|
||||
;;
|
||||
gnu)
|
||||
export HDF5_CXX=g++
|
||||
export HDF5_CXXLINKER=g++
|
||||
|
@ -17,6 +17,7 @@ double residual_max(double * A, unsigned int Dim) {
|
||||
for (unsigned int i = 0; i < Dim; i++) {
|
||||
for (unsigned int j = 0; j < Dim; j++) {
|
||||
double delta = (A[i * Dim + j] - (i == j));
|
||||
delta = abs(delta);
|
||||
if (delta > max) max = delta;
|
||||
}
|
||||
}
|
||||
|
1
tools/convert-to-h5.py
Normal file → Executable file
1
tools/convert-to-h5.py
Normal file → Executable file
@ -1,3 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
import h5py
|
||||
import numpy as np
|
||||
from parse import parse
|
||||
|
87
tools/matrix_properties.py
Executable file
87
tools/matrix_properties.py
Executable file
@ -0,0 +1,87 @@
|
||||
#!/usr/bin/env python
|
||||
import h5py
|
||||
import sys
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
fname = sys.argv[1]
|
||||
dataset =h5py.File(fname, "r")
|
||||
cycle_num = sys.argv[2]
|
||||
cycle = "cycle_" + cycle_num
|
||||
cgroup = dataset[cycle]
|
||||
|
||||
slater_matrix = cgroup["slater_matrix"][()]
|
||||
slater_inverse = cgroup["slater_inverse"][()]
|
||||
nupdates = cgroup["nupdates"][()]
|
||||
update_idxs = cgroup["col_update_index"][()]
|
||||
updates = cgroup["updates"][()]
|
||||
dim = cgroup["slater_matrix_dim"][()]
|
||||
Id = np.identity(dim)
|
||||
|
||||
print(f'========================\n== UPDATE CYCLE: {cycle_num} ==\n========================')
|
||||
print()
|
||||
print(f'Number of updates: {nupdates}')
|
||||
print(f'Columns that need to be updated (replaced): {update_idxs}\n')
|
||||
|
||||
# det_sm = np.linalg.det(slater_matrix)
|
||||
# det_si = np.linalg.det(slater_inverse)
|
||||
# eigen_values_sm, eigen_vectors_sm = np.linalg.eig(slater_matrix)
|
||||
# eigen_values_si, eigen_vectors_si = np.linalg.eig(slater_inverse)
|
||||
|
||||
# SSi = np.matmul(slater_matrix, slater_inverse)
|
||||
# detSSi = np.linalg.det(SSi)
|
||||
# delta = Id - SSi
|
||||
# res_max = np.amax(abs(delta))
|
||||
# res_max2 = res_max*res_max
|
||||
# res_fro = np.linalg.norm(delta, 'fro')
|
||||
# res_fro2 = res_fro*res_fro
|
||||
|
||||
# print(f'Determinant of Slater-matrix: {det_sm}')
|
||||
# print(f'Determinant of inverse Slater-matrix: {det_si}\n')
|
||||
|
||||
# print(f'Smalles eigenvalue (modulus) of Slater-matrix: {np.amin(abs(eigen_values_sm))}')
|
||||
# print(f'Smalles eigenvalue (modulus) of inverse Slater-matrix: {np.amin(abs(eigen_values_si))}\n')
|
||||
|
||||
# print(f'Det(S*Sinv): {detSSi}')
|
||||
# print(f'Residual (Id - S*Sinv) (Max norm): {res_max}')
|
||||
# print(f'Residual (Max norm sq.): {res_max2}')
|
||||
# print(f'Residual (Frob. norm): {res_fro}')
|
||||
# print(f'Residual (Frob. norm sq.): {res_fro2}\n')
|
||||
|
||||
print(f'+-----------------------------------------------+\n| Updating Slater-matrix... |')
|
||||
slater_matrix_new = slater_matrix
|
||||
index = 0
|
||||
for update in updates:
|
||||
column = update_idxs[index] - 1
|
||||
slater_matrix_new[column] = update
|
||||
index = index + 1
|
||||
|
||||
print(f'| Computing inverse of updated Slater-matrix... |\n+-----------------------------------------------+\n')
|
||||
slater_inverse_new = np.linalg.inv(slater_matrix_new)
|
||||
|
||||
det_sm = np.linalg.det(slater_matrix_new)
|
||||
det_si = np.linalg.det(slater_inverse_new)
|
||||
eigen_values_sm, eigen_vectors_sm = np.linalg.eig(slater_matrix_new)
|
||||
eigen_values_si, eigen_vectors_si = np.linalg.eig(slater_inverse_new)
|
||||
|
||||
SSi = np.matmul(slater_matrix_new, slater_inverse_new)
|
||||
detSSi = np.linalg.det(SSi)
|
||||
delta = Id - SSi
|
||||
res_max = np.amax(abs(delta))
|
||||
res_max2 = res_max*res_max
|
||||
res_fro = np.linalg.norm(delta, 'fro')
|
||||
res_fro2 = res_fro*res_fro
|
||||
|
||||
print(f'(DUSM) Determinant of UPDATED Slater-matrix: {cycle_num}, {det_sm}')
|
||||
print(f'(DUSI) Determinant of UPDATED inverse Slater-matrix: {det_si}\n')
|
||||
|
||||
print(f'(SEVUSM) Smalles eigenvalue (modulus) of UPDATED Slater-matrix: {np.amin(abs(eigen_values_sm))}')
|
||||
print(f'(SEVUSI) Smalles eigenvalue (modulus) of UPDATED inverse Slater-matrix: {np.amin(abs(eigen_values_si))}\n')
|
||||
|
||||
print(f'(DSSI) det(S*Sinv): {detSSi}')
|
||||
print(f'(RMN) Residual (Id - S*Sinv) (Max norm): {res_max}')
|
||||
print(f'(RMN2) Residual (Max norm sq.): {res_max2}')
|
||||
print(f'(RFN) Residual (Frob. norm): {res_fro}')
|
||||
print(f'(RFN2) Residual (Frob. norm sq.): {res_fro2}\n')
|
||||
|
||||
dataset.close()
|
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import sys
|
||||
import numpy as np
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user