mirror of
https://github.com/TREX-CoE/Sherman-Morrison.git
synced 2025-01-12 14:08:34 +01:00
Added random matrix initialisation of arbitrary size. Added function to calculate determinant to test matrix invertability of A and A0.
This commit is contained in:
parent
8f54ca1124
commit
7d3ffe1d2a
@ -3,6 +3,9 @@
|
|||||||
|
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <string>
|
#include <string>
|
||||||
|
#include <cmath>
|
||||||
|
#include <cstdlib>
|
||||||
|
#include <ctime>
|
||||||
using namespace std;
|
using namespace std;
|
||||||
|
|
||||||
uint getMaxIndex(double* arr, uint size);
|
uint getMaxIndex(double* arr, uint size);
|
||||||
@ -12,9 +15,12 @@ template<typename T>void showMatrix(T** matrix, uint size, string name);
|
|||||||
template<typename T>void showMatrixT(T** matrix, uint size, string name);
|
template<typename T>void showMatrixT(T** matrix, uint size, string name);
|
||||||
template<typename T>T** matMul(T** A, T** B, uint size);
|
template<typename T>T** matMul(T** A, T** B, uint size);
|
||||||
template<typename T1, typename T2>T1** outProd(T1* vec1, T2* vec2, uint size);
|
template<typename T1, typename T2>T1** outProd(T1* vec1, T2* vec2, uint size);
|
||||||
|
template<typename T>T matDet(T** A, int M);
|
||||||
|
|
||||||
int main() {
|
int main() {
|
||||||
|
|
||||||
|
srand((unsigned) time(0));
|
||||||
|
uint randRange = 1; // to get random integers in range [-randRange, randRange]
|
||||||
uint M = 3;
|
uint M = 3;
|
||||||
uint i, j, k, l, lbar, tmp;
|
uint i, j, k, l, lbar, tmp;
|
||||||
double alpha, beta;
|
double alpha, beta;
|
||||||
@ -49,8 +55,6 @@ int main() {
|
|||||||
// Initialize all matrices with zeros
|
// Initialize all matrices with zeros
|
||||||
for (i = 0; i < M; i++) {
|
for (i = 0; i < M; i++) {
|
||||||
for (j = 0; j < M; j++) {
|
for (j = 0; j < M; j++) {
|
||||||
A[i][j] = 0;
|
|
||||||
//Ainv[i][j] = 0;
|
|
||||||
A0[i][j] = 0;
|
A0[i][j] = 0;
|
||||||
A0inv[i][j] = 0;
|
A0inv[i][j] = 0;
|
||||||
Ar[i][j] = 0;
|
Ar[i][j] = 0;
|
||||||
@ -67,10 +71,17 @@ int main() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Initialize A
|
// // Initialize A with M=3 and Eq. (17) from paper
|
||||||
A[0][0] = 1; A[0][1] = 1; A[0][2] = -1;
|
// A[0][0] = 1; A[0][1] = 1; A[0][2] = -1;
|
||||||
A[1][0] = 1; A[1][1] = 1; A[1][2] = 0;
|
// A[1][0] = 1; A[1][1] = 1; A[1][2] = 0;
|
||||||
A[2][0] = -1; A[2][1] = 0; A[2][2] = -1;
|
// A[2][0] = -1; A[2][1] = 0; A[2][2] = -1;
|
||||||
|
|
||||||
|
// Fill A with random numbers from [-1,1]
|
||||||
|
for (i = 0; i < M; i++) {
|
||||||
|
for (j = 0; j < M; j++) {
|
||||||
|
A[i][j] = rand()%(2*randRange+1)-randRange;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// Define identity matrix, A0, A0inv and p
|
// Define identity matrix, A0, A0inv and p
|
||||||
p[0] = 0;
|
p[0] = 0;
|
||||||
@ -100,7 +111,7 @@ int main() {
|
|||||||
}
|
}
|
||||||
// showVector(ylk[0][k], M+1, "y0k");
|
// showVector(ylk[0][k], M+1, "y0k");
|
||||||
}
|
}
|
||||||
showMatrixT(ylk[0], M+1, "y0k");
|
// showMatrixT(ylk[0], M+1, "y0k");
|
||||||
|
|
||||||
// Calculate all the ylk from the y0k
|
// Calculate all the ylk from the y0k
|
||||||
// showVector(p, M+1, "p");
|
// showVector(p, M+1, "p");
|
||||||
@ -131,9 +142,8 @@ int main() {
|
|||||||
// showVector(ylk[l][p[k]], M+1, "ylk");
|
// showVector(ylk[l][p[k]], M+1, "ylk");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
showMatrixT(ylk[1], M+1, "y1k");
|
// showMatrixT(ylk[1], M+1, "y1k");
|
||||||
showMatrixT(ylk[2], M+1, "y2k");
|
// showMatrixT(ylk[2], M+1, "y2k");
|
||||||
// EVERYTHING WORKS UPTO HERE
|
|
||||||
|
|
||||||
// Construct A-inverse from A0-inverse and the ylk
|
// Construct A-inverse from A0-inverse and the ylk
|
||||||
double** U;
|
double** U;
|
||||||
@ -257,4 +267,40 @@ T1** outProd(T1* vec1, T2* vec2, uint size) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
return C;
|
return C;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
T matDet(T** A, int M) {
|
||||||
|
int det = 0, p, h, k, i, j;
|
||||||
|
T** temp = new T*[M];
|
||||||
|
for (int i = 0; i < M; i++) temp[i] = new T[M];
|
||||||
|
if(M==1) {
|
||||||
|
return A[0][0];
|
||||||
|
}
|
||||||
|
else if(M == 2) {
|
||||||
|
det = (A[0][0] * A[1][1] - A[0][1] * A[1][0]);
|
||||||
|
return det;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
for(p = 0; p < M; p++) {
|
||||||
|
h = 0;
|
||||||
|
k = 0;
|
||||||
|
for(i = 1; i < M; i++) {
|
||||||
|
for( j = 0; j < M; j++) {
|
||||||
|
if(j == p) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
temp[h][k] = A[i][j];
|
||||||
|
k++;
|
||||||
|
if(k == M-1) {
|
||||||
|
h++;
|
||||||
|
k = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
det = det + A[0][p] * pow(-1, p) * matDet(temp, M-1);
|
||||||
|
}
|
||||||
|
return det;
|
||||||
|
}
|
||||||
|
delete [] temp;
|
||||||
}
|
}
|
Loading…
Reference in New Issue
Block a user