Merge pull request #46 from fmgjcoppens/bug/woodbury

Solved bug in Woodbury and SM/WB mix kernels
This commit is contained in:
François Coppens 2021-07-08 11:15:59 +02:00 committed by GitHub
commit 61df6e2827
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 255 additions and 175 deletions

View File

@ -3,15 +3,15 @@
void SMWB1(double *Slater_inv, unsigned int Dim, unsigned int N_updates, void SMWB1(double *Slater_inv, unsigned int Dim, unsigned int N_updates,
double *Updates, unsigned int *Updates_index); double *Updates, unsigned int *Updates_index);
// Sherman-Morrison-Woodbury kernel 2 // // Sherman-Morrison-Woodbury kernel 2
// WB2, WB3, SM3 mixing scheme // // WB2, WB3, SM3 mixing scheme
void SMWB2(double *Slater_inv, unsigned int Dim, unsigned int N_updates, // void SMWB2(double *Slater_inv, unsigned int Dim, unsigned int N_updates,
double *Updates, unsigned int *Updates_index); // double *Updates, unsigned int *Updates_index);
// Sherman-Morrison-Woodbury kernel 3 // // Sherman-Morrison-Woodbury kernel 3
// WB2, WB3, SM4 mixing scheme // // WB2, WB3, SM4 mixing scheme
void SMWB3(double *Slater_inv, unsigned int Dim, unsigned int N_updates, // void SMWB3(double *Slater_inv, unsigned int Dim, unsigned int N_updates,
double *Updates, unsigned int *Updates_index); // double *Updates, unsigned int *Updates_index);
// Sherman-Morrison-Woodbury kernel 4 // Sherman-Morrison-Woodbury kernel 4
// WB2, SM2 mixing scheme // WB2, SM2 mixing scheme

View File

@ -7,6 +7,9 @@ void SM1(double *Slater_inv, unsigned int Dim, unsigned int N_updates,
void SM2(double *Slater_inv, unsigned int Dim, unsigned int N_updates, void SM2(double *Slater_inv, unsigned int Dim, unsigned int N_updates,
double *Updates, unsigned int *Updates_index); double *Updates, unsigned int *Updates_index);
void SM2star(double *Slater_inv, unsigned int Dim, unsigned int N_updates,
double *Updates, unsigned int *Updates_index, double *later_updates, unsigned int* later_index, unsigned int *later);
// Sherman Morrison, leaving zero denominators for later // Sherman Morrison, leaving zero denominators for later
void SM3(double *Slater_inv, unsigned int Dim, unsigned int N_updates, void SM3(double *Slater_inv, unsigned int Dim, unsigned int N_updates,
double *Updates, unsigned int *Updates_index); double *Updates, unsigned int *Updates_index);

View File

@ -3,6 +3,9 @@
#include "Woodbury.hpp" #include "Woodbury.hpp"
#include "Helpers.hpp" #include "Helpers.hpp"
// #define DEBUG1
// #define DEBUG2
// Sherman-Morrison-Woodbury kernel 1 // Sherman-Morrison-Woodbury kernel 1
// WB2, WB3, SM2 mixing scheme // WB2, WB3, SM2 mixing scheme
void SMWB1(double *Slater_inv, unsigned int Dim, unsigned int N_updates, double *Updates, unsigned int *Updates_index) { void SMWB1(double *Slater_inv, unsigned int Dim, unsigned int N_updates, double *Updates, unsigned int *Updates_index) {
@ -19,6 +22,9 @@ void SMWB1(double *Slater_inv, unsigned int Dim, unsigned int N_updates, double
unsigned int length_1block = 1 * Dim; unsigned int length_1block = 1 * Dim;
// Apply first 3*n_of_3blocks updates in n_of_3blocks blocks of 3 updates with Woodbury 3x3 kernel // Apply first 3*n_of_3blocks updates in n_of_3blocks blocks of 3 updates with Woodbury 3x3 kernel
double later_updates[Dim * N_updates];
unsigned int later_index[N_updates];
unsigned int later = 0;
if (n_of_3blocks > 0) { if (n_of_3blocks > 0) {
for (unsigned int i = 0; i < n_of_3blocks; i++) { for (unsigned int i = 0; i < n_of_3blocks; i++) {
double *Updates_3block = &Updates[i * length_3block]; double *Updates_3block = &Updates[i * length_3block];
@ -31,7 +37,9 @@ void SMWB1(double *Slater_inv, unsigned int Dim, unsigned int N_updates, double
showMatrix2(Updates_3block, 3, Dim, "Updates_3block"); showMatrix2(Updates_3block, 3, Dim, "Updates_3block");
showMatrix2(Updates_index_3block, 1, 3, "Updates_index_3block"); showMatrix2(Updates_index_3block, 1, 3, "Updates_index_3block");
#endif #endif
SM2(Slater_inv, Dim, 3, Updates_3block, Updates_index_3block); unsigned int l = 0;
SM2star(Slater_inv, Dim, 3, Updates_3block, Updates_index_3block, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
} }
} }
} }
@ -45,122 +53,129 @@ void SMWB1(double *Slater_inv, unsigned int Dim, unsigned int N_updates, double
#ifdef DEBUG2 #ifdef DEBUG2
std::cerr << "Woodbury 2x2 kernel failed! Sending block to SM2" << std::endl; std::cerr << "Woodbury 2x2 kernel failed! Sending block to SM2" << std::endl;
#endif #endif
SM2(Slater_inv, Dim, 2, Updates_2block, Updates_index_2block); unsigned int l = 0;
SM2star(Slater_inv, Dim, 2, Updates_2block, Updates_index_2block, later_updates+(Dim * later), later_index + later, &l);
later = later + l;
} }
} else if (remainder == 1) { // Apply last remaining update with SM2 } else if (remainder == 1) { // Apply last remaining update with SM2
double *Updates_1block = &Updates[n_of_3blocks * length_3block]; double *Updates_1block = &Updates[n_of_3blocks * length_3block];
unsigned int *Updates_index_1block = &Updates_index[3 * n_of_3blocks]; unsigned int *Updates_index_1block = &Updates_index[3 * n_of_3blocks];
SM2(Slater_inv, Dim, 1, Updates_1block, Updates_index_1block); unsigned int l = 0;
} else { // remainder == 0 SM2star(Slater_inv, Dim, 1, Updates_1block, Updates_index_1block, later_updates+(Dim * later), later_index + later, &l);
// Nothing left to do. later = later + l;
}
} }
// Sherman-Morrison-Woodbury kernel 2 if (later > 0) {
// WB2, WB3, SM3 mixing scheme SM2(Slater_inv, Dim, later, later_updates, later_index);
void SMWB2(double *Slater_inv, unsigned int Dim, unsigned int N_updates, double *Updates, unsigned int *Updates_index) {
#ifdef DEBUG2
std::cerr << "Called Sherman-Morrison-Woodbury kernel 1 with " << N_updates << " updates" << std::endl;
#endif
unsigned int n_of_3blocks = N_updates / 3;
unsigned int remainder = N_updates % 3;
unsigned int length_3block = 3 * Dim;
unsigned int length_2block = 2 * Dim;
unsigned int length_1block = 1 * Dim;
#ifdef DEBUG2
showMatrix2(Updates_index, 1, N_updates, "Updates_index");
showMatrix2(Updates, N_updates, Dim, "Updates");
#endif
// Apply first 3*n_of_3blocks updates in n_of_3blocks blocks of 3 updates with Woodbury 3x3 kernel
if (n_of_3blocks > 0) {
for (unsigned int i = 0; i < n_of_3blocks; i++) {
double *Updates_3block = &Updates[i * length_3block];
unsigned int *Updates_index_3block = &Updates_index[i * 3];
bool ok;
ok = WB3(Slater_inv, Dim, Updates_3block, Updates_index_3block);
if (!ok) { // Send the entire block to SM3
#ifdef DEBUG2
std::cerr << "Woodbury 3x3 kernel failed! Sending block to SM3" << std::endl;
showMatrix2(Updates_3block, 3, Dim, "Updates_3block");
showMatrix2(Updates_index_3block, 1, 3, "Updates_index_3block");
#endif
SM3(Slater_inv, Dim, 3, Updates_3block, Updates_index_3block);
}
}
} }
if (remainder == 2) { // Apply last remaining block of 2 updates with Woodbury 2x2 kernel
double *Updates_2block = &Updates[n_of_3blocks * length_3block];
unsigned int *Updates_index_2block = &Updates_index[3 * n_of_3blocks];
bool ok;
ok = WB2(Slater_inv, Dim, Updates_2block, Updates_index_2block);
if (!ok) { // Send the entire block to SM3
std::cerr << "Woodbury 2x2 kernel failed! Sending block to SM3" << std::endl;
SM3(Slater_inv, Dim, 2, Updates_2block, Updates_index_2block);
}
} else if (remainder == 1) { // Apply last remaining update with SM3
double *Updates_1block = &Updates[n_of_3blocks * length_3block];
unsigned int *Updates_index_1block = &Updates_index[3 * n_of_3blocks];
SM3(Slater_inv, Dim, 1, Updates_1block, Updates_index_1block);
} else { // remainder == 0
// Nothing left to do.
}
} }
// Sherman-Morrison-Woodbury kernel 3 // // Sherman-Morrison-Woodbury kernel 2
// WB2, WB3, SM4 mixing scheme // // WB2, WB3, SM3 mixing scheme
void SMWB3(double *Slater_inv, unsigned int Dim, unsigned int N_updates, double *Updates, unsigned int *Updates_index) { // void SMWB2(double *Slater_inv, unsigned int Dim, unsigned int N_updates, double *Updates, unsigned int *Updates_index) {
std::cerr << "Called Sherman-Morrison-Woodbury kernel 1 with " << N_updates << " updates" << std::endl; // #ifdef DEBUG2
// std::cerr << "Called Sherman-Morrison-Woodbury kernel 1 with " << N_updates << " updates" << std::endl;
// #endif
unsigned int n_of_3blocks = N_updates / 3; // unsigned int n_of_3blocks = N_updates / 3;
unsigned int remainder = N_updates % 3; // unsigned int remainder = N_updates % 3;
unsigned int length_3block = 3 * Dim; // unsigned int length_3block = 3 * Dim;
unsigned int length_2block = 2 * Dim; // unsigned int length_2block = 2 * Dim;
unsigned int length_1block = 1 * Dim; // unsigned int length_1block = 1 * Dim;
#ifdef DEBUG2 // #ifdef DEBUG2
showMatrix2(Updates_index, 1, N_updates, "Updates_index"); // showMatrix2(Updates_index, 1, N_updates, "Updates_index");
showMatrix2(Updates, N_updates, Dim, "Updates"); // showMatrix2(Updates, N_updates, Dim, "Updates");
#endif // #endif
// Apply first 3*n_of_3blocks updates in n_of_3blocks blocks of 3 updates with Woodbury 3x3 kernel // // Apply first 3*n_of_3blocks updates in n_of_3blocks blocks of 3 updates with Woodbury 3x3 kernel
if (n_of_3blocks > 0) { // if (n_of_3blocks > 0) {
for (unsigned int i = 0; i < n_of_3blocks; i++) { // for (unsigned int i = 0; i < n_of_3blocks; i++) {
double *Updates_3block = &Updates[i * length_3block]; // double *Updates_3block = &Updates[i * length_3block];
unsigned int *Updates_index_3block = &Updates_index[i * 3]; // unsigned int *Updates_index_3block = &Updates_index[i * 3];
bool ok; // bool ok;
ok = WB3(Slater_inv, Dim, Updates_3block, Updates_index_3block); // ok = WB3(Slater_inv, Dim, Updates_3block, Updates_index_3block);
if (!ok) { // Send the entire block to SM4 // if (!ok) { // Send the entire block to SM3
std::cerr << "Woodbury 3x3 kernel failed! Sending block to SM4" << std::endl; // #ifdef DEBUG2
#ifdef DEBUG2 // std::cerr << "Woodbury 3x3 kernel failed! Sending block to SM3" << std::endl;
showMatrix2(Updates_3block, 3, Dim, "Updates_3block"); // showMatrix2(Updates_3block, 3, Dim, "Updates_3block");
showMatrix2(Updates_index_3block, 1, 3, "Updates_index_3block"); // showMatrix2(Updates_index_3block, 1, 3, "Updates_index_3block");
#endif // #endif
SM4(Slater_inv, Dim, 3, Updates_3block, Updates_index_3block); // SM3(Slater_inv, Dim, 3, Updates_3block, Updates_index_3block);
} // }
} // }
} // }
if (remainder == 2) { // Apply last remaining block of 2 updates with Woodbury 2x2 kernel // if (remainder == 2) { // Apply last remaining block of 2 updates with Woodbury 2x2 kernel
double *Updates_2block = &Updates[n_of_3blocks * length_3block]; // double *Updates_2block = &Updates[n_of_3blocks * length_3block];
unsigned int *Updates_index_2block = &Updates_index[3 * n_of_3blocks]; // unsigned int *Updates_index_2block = &Updates_index[3 * n_of_3blocks];
bool ok; // bool ok;
ok = WB2(Slater_inv, Dim, Updates_2block, Updates_index_2block); // ok = WB2(Slater_inv, Dim, Updates_2block, Updates_index_2block);
if (!ok) { // Send the entire block to SM4 // if (!ok) { // Send the entire block to SM3
std::cerr << "Woodbury 2x2 kernel failed! Sending block to SM4" << std::endl; // std::cerr << "Woodbury 2x2 kernel failed! Sending block to SM3" << std::endl;
SM4(Slater_inv, Dim, 2, Updates_2block, Updates_index_2block); // SM3(Slater_inv, Dim, 2, Updates_2block, Updates_index_2block);
} // }
} else if (remainder == 1) { // Apply last remaining update with SM4 // } else if (remainder == 1) { // Apply last remaining update with SM3
double *Updates_1block = &Updates[n_of_3blocks * length_3block]; // double *Updates_1block = &Updates[n_of_3blocks * length_3block];
unsigned int *Updates_index_1block = &Updates_index[3 * n_of_3blocks]; // unsigned int *Updates_index_1block = &Updates_index[3 * n_of_3blocks];
SM4(Slater_inv, Dim, 1, Updates_1block, Updates_index_1block); // SM3(Slater_inv, Dim, 1, Updates_1block, Updates_index_1block);
} else { // remainder == 0 // } else { // remainder == 0
// Nothing left to do. // // Nothing left to do.
} // }
} // }
// // Sherman-Morrison-Woodbury kernel 3
// // WB2, WB3, SM4 mixing scheme
// void SMWB3(double *Slater_inv, unsigned int Dim, unsigned int N_updates, double *Updates, unsigned int *Updates_index) {
// std::cerr << "Called Sherman-Morrison-Woodbury kernel 1 with " << N_updates << " updates" << std::endl;
// unsigned int n_of_3blocks = N_updates / 3;
// unsigned int remainder = N_updates % 3;
// unsigned int length_3block = 3 * Dim;
// unsigned int length_2block = 2 * Dim;
// unsigned int length_1block = 1 * Dim;
// #ifdef DEBUG2
// showMatrix2(Updates_index, 1, N_updates, "Updates_index");
// showMatrix2(Updates, N_updates, Dim, "Updates");
// #endif
// // Apply first 3*n_of_3blocks updates in n_of_3blocks blocks of 3 updates with Woodbury 3x3 kernel
// if (n_of_3blocks > 0) {
// for (unsigned int i = 0; i < n_of_3blocks; i++) {
// double *Updates_3block = &Updates[i * length_3block];
// unsigned int *Updates_index_3block = &Updates_index[i * 3];
// bool ok;
// ok = WB3(Slater_inv, Dim, Updates_3block, Updates_index_3block);
// if (!ok) { // Send the entire block to SM4
// std::cerr << "Woodbury 3x3 kernel failed! Sending block to SM4" << std::endl;
// #ifdef DEBUG2
// showMatrix2(Updates_3block, 3, Dim, "Updates_3block");
// showMatrix2(Updates_index_3block, 1, 3, "Updates_index_3block");
// #endif
// SM4(Slater_inv, Dim, 3, Updates_3block, Updates_index_3block);
// }
// }
// }
// if (remainder == 2) { // Apply last remaining block of 2 updates with Woodbury 2x2 kernel
// double *Updates_2block = &Updates[n_of_3blocks * length_3block];
// unsigned int *Updates_index_2block = &Updates_index[3 * n_of_3blocks];
// bool ok;
// ok = WB2(Slater_inv, Dim, Updates_2block, Updates_index_2block);
// if (!ok) { // Send the entire block to SM4
// std::cerr << "Woodbury 2x2 kernel failed! Sending block to SM4" << std::endl;
// SM4(Slater_inv, Dim, 2, Updates_2block, Updates_index_2block);
// }
// } else if (remainder == 1) { // Apply last remaining update with SM4
// double *Updates_1block = &Updates[n_of_3blocks * length_3block];
// unsigned int *Updates_index_1block = &Updates_index[3 * n_of_3blocks];
// SM4(Slater_inv, Dim, 1, Updates_1block, Updates_index_1block);
// } else { // remainder == 0
// // Nothing left to do.
// }
// }
// Sherman-Morrison-Woodbury kernel 4 // Sherman-Morrison-Woodbury kernel 4
// WB2, SM2 mixing scheme // WB2, SM2 mixing scheme
@ -177,6 +192,9 @@ void SMWB4(double *Slater_inv, unsigned int Dim, unsigned int N_updates, double
unsigned int length_1block = 1 * Dim; unsigned int length_1block = 1 * Dim;
// Apply first 2*n_of_2blocks updates in n_of_2blocks blocks of 2 updates with Woodbury 2x2 kernel // Apply first 2*n_of_2blocks updates in n_of_2blocks blocks of 2 updates with Woodbury 2x2 kernel
double later_updates[Dim * N_updates];
unsigned int later_index[N_updates];
unsigned int later = 0;
if (n_of_2blocks > 0) { if (n_of_2blocks > 0) {
for (unsigned int i = 0; i < n_of_2blocks; i++) { for (unsigned int i = 0; i < n_of_2blocks; i++) {
double *Updates_2block = &Updates[i * length_2block]; double *Updates_2block = &Updates[i * length_2block];
@ -189,18 +207,25 @@ void SMWB4(double *Slater_inv, unsigned int Dim, unsigned int N_updates, double
showMatrix2(Updates_2block, 2, Dim, "Updates_2block"); showMatrix2(Updates_2block, 2, Dim, "Updates_2block");
showMatrix2(Updates_index_2block, 1, 2, "Updates_index_2block"); showMatrix2(Updates_index_2block, 1, 2, "Updates_index_2block");
#endif #endif
SM2(Slater_inv, Dim, 2, Updates_2block, Updates_index_2block); unsigned int l = 0;
SM2star(Slater_inv, Dim, 2, Updates_2block, Updates_index_2block, later_updates + (Dim * later), later_index + later, &l);
later = later + l;
} }
} }
} }
if (remainder == 1) { // Apply last remaining update with SM4 if (remainder == 1) { // Apply last remaining update with SM2
double *Updates_1block = &Updates[n_of_2blocks * length_2block]; double *Updates_1block = &Updates[n_of_2blocks * length_2block];
unsigned int *Updates_index_1block = &Updates_index[2 * n_of_2blocks]; unsigned int *Updates_index_1block = &Updates_index[2 * n_of_2blocks];
SM2(Slater_inv, Dim, 1, Updates_1block, Updates_index_1block); unsigned int l = 0;
} else { // remainder == 0 SM2star(Slater_inv, Dim, 1, Updates_1block, Updates_index_1block, later_updates + (Dim * later), later_index + later, &l);
// Nothing left to do. later = later + l;
} }
if (later > 0) {
SM2(Slater_inv, Dim, later, later_updates, later_index);
}
} }
extern "C" { extern "C" {
@ -208,14 +233,14 @@ void SMWB1_f(double **linSlater_inv, unsigned int *Dim, unsigned int *N_updates,
double **linUpdates, unsigned int **Updates_index) { double **linUpdates, unsigned int **Updates_index) {
SMWB1(*linSlater_inv, *Dim, *N_updates, *linUpdates, *Updates_index); SMWB1(*linSlater_inv, *Dim, *N_updates, *linUpdates, *Updates_index);
} }
void SMWB2_f(double **linSlater_inv, unsigned int *Dim, unsigned int *N_updates, // void SMWB2_f(double **linSlater_inv, unsigned int *Dim, unsigned int *N_updates,
double **linUpdates, unsigned int **Updates_index) { // double **linUpdates, unsigned int **Updates_index) {
SMWB2(*linSlater_inv, *Dim, *N_updates, *linUpdates, *Updates_index); // SMWB2(*linSlater_inv, *Dim, *N_updates, *linUpdates, *Updates_index);
} // }
void SMWB3_f(double **linSlater_inv, unsigned int *Dim, unsigned int *N_updates, // void SMWB3_f(double **linSlater_inv, unsigned int *Dim, unsigned int *N_updates,
double **linUpdates, unsigned int **Updates_index) { // double **linUpdates, unsigned int **Updates_index) {
SMWB3(*linSlater_inv, *Dim, *N_updates, *linUpdates, *Updates_index); // SMWB3(*linSlater_inv, *Dim, *N_updates, *linUpdates, *Updates_index);
} // }
void SMWB4_f(double **linSlater_inv, unsigned int *Dim, unsigned int *N_updates, void SMWB4_f(double **linSlater_inv, unsigned int *Dim, unsigned int *N_updates,
double **linUpdates, unsigned int **Updates_index) { double **linUpdates, unsigned int **Updates_index) {
SMWB4(*linSlater_inv, *Dim, *N_updates, *linUpdates, *Updates_index); SMWB4(*linSlater_inv, *Dim, *N_updates, *linUpdates, *Updates_index);

View File

@ -3,6 +3,8 @@
#include "SM_Standard.hpp" #include "SM_Standard.hpp"
#include "Helpers.hpp" #include "Helpers.hpp"
#define DEBUG1
// Naïve Sherman Morrison // Naïve Sherman Morrison
void SM1(double *Slater_inv, unsigned int Dim, unsigned int N_updates, void SM1(double *Slater_inv, unsigned int Dim, unsigned int N_updates,
double *Updates, unsigned int *Updates_index) { double *Updates, unsigned int *Updates_index) {
@ -57,13 +59,13 @@ void SM2(double *Slater_inv, unsigned int Dim, unsigned int N_updates,
std::cerr << "Called SM2 with " << N_updates << " updates" << std::endl; std::cerr << "Called SM2 with " << N_updates << " updates" << std::endl;
#endif #endif
double C[Dim];
double D[Dim];
double later_updates[Dim * N_updates]; double later_updates[Dim * N_updates];
unsigned int later_index[N_updates]; unsigned int later_index[N_updates];
unsigned int later = 0; unsigned int later = 0;
double C[Dim];
double D[Dim];
unsigned int l = 0; unsigned int l = 0;
// For each update // For each update
while (l < N_updates) { while (l < N_updates) {
@ -116,6 +118,66 @@ void SM2(double *Slater_inv, unsigned int Dim, unsigned int N_updates,
} }
} }
// Sherman Morrison, with J. Slagel splitting
// http://hdl.handle.net/10919/52966
void SM2star(double *Slater_inv, unsigned int Dim, unsigned int N_updates,
double *Updates, unsigned int *Updates_index, double *later_updates, unsigned int* later_index, unsigned int *later) {
#ifdef DEBUG1
std::cerr << "Called SM2* with " << N_updates << " updates" << std::endl;
#endif
double C[Dim];
double D[Dim];
unsigned int l = 0;
// For each update
while (l < N_updates) {
// C = A^{-1} x U_l
for (unsigned int i = 0; i < Dim; i++) {
C[i] = 0;
for (unsigned int j = 0; j < Dim; j++) {
C[i] += Slater_inv[i * Dim + j] * Updates[l * Dim + j];
}
}
// Denominator
double den = 1 + C[Updates_index[l] - 1];
if (std::fabs(den) < threshold()) {
#ifdef DEBUG1
std::cerr << "Breakdown condition triggered at " << Updates_index[l]
<< std::endl;
std::cerr << "Denominator = " << den << std::endl;
#endif
// U_l = U_l / 2 (do the split)
for (unsigned int i = 0; i < Dim; i++) {
later_updates[*later * Dim + i] = Updates[l * Dim + i] / 2.0;
C[i] /= 2.0;
}
later_index[*later] = Updates_index[l];
(*later)++;
den = 1 + C[Updates_index[l] - 1];
}
double iden = 1 / den;
// D = v^T x A^{-1}
for (unsigned int j = 0; j < Dim; j++) {
D[j] = Slater_inv[(Updates_index[l] - 1) * Dim + j];
}
// A^{-1} = A^{-1} - C x D / den
for (unsigned int i = 0; i < Dim; i++) {
for (unsigned int j = 0; j < Dim; j++) {
double update = C[i] * D[j] * iden;
Slater_inv[i * Dim + j] -= update;
}
}
l += 1;
}
}
// Sherman Morrison, leaving zero denominators for later // Sherman Morrison, leaving zero denominators for later
void SM3(double *Slater_inv, unsigned int Dim, unsigned int N_updates, void SM3(double *Slater_inv, unsigned int Dim, unsigned int N_updates,
double *Updates, unsigned int *Updates_index) { double *Updates, unsigned int *Updates_index) {

View File

@ -10,6 +10,9 @@
#include "Woodbury.hpp" #include "Woodbury.hpp"
#include "Helpers.hpp" #include "Helpers.hpp"
// #define DEBUG1
// #define DEBUG2
// Woodbury 2x2 kernel // Woodbury 2x2 kernel
bool WB2(double *Slater_inv, unsigned int Dim, double *Updates, bool WB2(double *Slater_inv, unsigned int Dim, double *Updates,
unsigned int *Updates_index) { unsigned int *Updates_index) {
@ -43,7 +46,6 @@ bool WB2(double *Slater_inv, unsigned int Dim, double *Updates,
} }
} }
} }
// matMul2(Updates, Slater_inv, C, 2, Dim, Dim);
// Compute B = 1 + V * C // Compute B = 1 + V * C
double B[4]; double B[4];
@ -53,24 +55,23 @@ bool WB2(double *Slater_inv, unsigned int Dim, double *Updates,
B[3] = C[row2 * 2 + 1]; B[3] = C[row2 * 2 + 1];
B[0] += 1, B[3] += 1; B[0] += 1, B[3] += 1;
// Compute B^{-1} with explicit formula for 2x2 inversion
double idet = 1.0 / (B[0] * B[3] - B[1] * B[2]);
double Binv[4];
Binv[0] = idet * B[3];
Binv[1] = -1.0 * idet * B[1];
Binv[2] = -1.0 * idet * B[2];
Binv[3] = idet * B[0];
// Check if determinant of inverted matrix is not zero // Check if determinant of inverted matrix is not zero
double det = Binv[0] * Binv[3] - Binv[1] * Binv[2]; double det = B[0] * B[3] - B[1] * B[2];
if (std::fabs(det) < threshold()) { if (std::fabs(det) < threshold()) {
std::cerr << "Determinant too close to zero! No inverse found." << std::endl;
#ifdef DEBUG1 #ifdef DEBUG1
std::cerr << "Determinant too close to zero!" << std::endl;
std::cerr << "Determinant = " << det << std::endl; std::cerr << "Determinant = " << det << std::endl;
#endif #endif
return false; return false;
} }
// Compute B^{-1} with explicit formula for 2x2 inversion
double Binv[4], idet = 1.0 / det;
Binv[0] = idet * B[3];
Binv[1] = -1.0 * idet * B[1];
Binv[2] = -1.0 * idet * B[2];
Binv[3] = idet * B[0];
// Compute B^{-1} x D // Compute B^{-1} x D
double tmp[2 * Dim]; double tmp[2 * Dim];
matMul2(Binv, D, tmp, 2, 2, Dim); matMul2(Binv, D, tmp, 2, 2, Dim);
@ -127,7 +128,6 @@ bool WB3(double *Slater_inv, unsigned int Dim, double *Updates,
} }
} }
} }
// matMul2(Updates, Slater_inv, C, 2, Dim, Dim);
#ifdef DEBUG2 #ifdef DEBUG2
showMatrix2(C, Dim, 3, "C = S_inv * U"); showMatrix2(C, Dim, 3, "C = S_inv * U");
@ -154,17 +154,25 @@ bool WB3(double *Slater_inv, unsigned int Dim, double *Updates,
showMatrix2(B, 3, 3, "B = 1 + V * C"); showMatrix2(B, 3, 3, "B = 1 + V * C");
#endif #endif
// Compute B^{-1} with explicit formula for 3x3 inversion // Check if determinant of B is not too close to zero
double Binv[9], det, idet; double det;
det = B[0] * (B[4] * B[8] - B[5] * B[7]) - det = B[0] * (B[4] * B[8] - B[5] * B[7]) -
B[1] * (B[3] * B[8] - B[5] * B[6]) + B[1] * (B[3] * B[8] - B[5] * B[6]) +
B[2] * (B[3] * B[7] - B[4] * B[6]); B[2] * (B[3] * B[7] - B[4] * B[6]);
idet = 1.0 / det;
#ifdef DEBUG2 #ifdef DEBUG2
std::cerr << "Determinant of B = " << det << std::endl; std::cerr << "Determinant of B = " << det << std::endl;
#endif #endif
if (std::fabs(det) < threshold()) {
// if (std::fabs(det) < 1000000) {
std::cerr << "Determinant too close to zero! No inverse found." << std::endl;
#ifdef DEBUG1
std::cerr << "Determinant = " << det << std::endl;
#endif
return false;
}
// Compute B^{-1} with explicit formula for 3x3 inversion
double Binv[9], idet = 1.0 / det;
Binv[0] = ( B[4] * B[8] - B[7] * B[5] ) * idet; Binv[0] = ( B[4] * B[8] - B[7] * B[5] ) * idet;
Binv[1] = - ( B[1] * B[8] - B[7] * B[2] ) * idet; Binv[1] = - ( B[1] * B[8] - B[7] * B[2] ) * idet;
Binv[2] = ( B[1] * B[5] - B[4] * B[2] ) * idet; Binv[2] = ( B[1] * B[5] - B[4] * B[2] ) * idet;
@ -180,24 +188,6 @@ bool WB3(double *Slater_inv, unsigned int Dim, double *Updates,
showMatrix2(Binv, 3, 3, "Binv"); showMatrix2(Binv, 3, 3, "Binv");
#endif #endif
// Check if determinant of inverted matrix is not zero
// double det;
det = Binv[0] * (Binv[4] * Binv[8] - Binv[5] * Binv[7]) -
Binv[1] * (Binv[3] * Binv[8] - Binv[5] * Binv[6]) +
Binv[2] * (Binv[3] * Binv[7] - Binv[4] * Binv[6]);
#ifdef DEBUG2
std::cerr << "Determinant of Binv = " << det << std::endl;
#endif
if (std::fabs(det) < threshold()) {
#ifdef DEBUG1
std::cerr << "Determinant too close to zero!" << std::endl;
std::cerr << "Determinant = " << det << std::endl;
#endif
return false;
}
// Compute B^{-1} x D // Compute B^{-1} x D
double tmp[3 * Dim]; double tmp[3 * Dim];
matMul2(Binv, D, tmp, 3, 3, Dim); matMul2(Binv, D, tmp, 3, 3, Dim);

View File

@ -7,7 +7,7 @@
#include "Woodbury.hpp" #include "Woodbury.hpp"
#include "SMWB.hpp" #include "SMWB.hpp"
#define PERF // #define PERF
#ifdef PERF #ifdef PERF
unsigned int repetition_number; unsigned int repetition_number;
@ -101,10 +101,10 @@ int test_cycle(H5File file, int cycle, std::string version, double tolerance) {
WB3(slater_inverse_nonpersistent, dim, u, col_update_index); WB3(slater_inverse_nonpersistent, dim, u, col_update_index);
} else if (version == "smwb1") { } else if (version == "smwb1") {
SMWB1(slater_inverse_nonpersistent, dim, nupdates, u, col_update_index); SMWB1(slater_inverse_nonpersistent, dim, nupdates, u, col_update_index);
} else if (version == "smwb2") { // } else if (version == "smwb2") {
SMWB2(slater_inverse_nonpersistent, dim, nupdates, u, col_update_index); // SMWB2(slater_inverse_nonpersistent, dim, nupdates, u, col_update_index);
} else if (version == "smwb3") { // } else if (version == "smwb3") {
SMWB3(slater_inverse_nonpersistent, dim, nupdates, u, col_update_index); // SMWB3(slater_inverse_nonpersistent, dim, nupdates, u, col_update_index);
} else if (version == "smwb4") { } else if (version == "smwb4") {
SMWB4(slater_inverse_nonpersistent, dim, nupdates, u, col_update_index); SMWB4(slater_inverse_nonpersistent, dim, nupdates, u, col_update_index);
#ifdef MKL #ifdef MKL
@ -138,10 +138,10 @@ int test_cycle(H5File file, int cycle, std::string version, double tolerance) {
WB3(slater_inverse, dim, u, col_update_index); WB3(slater_inverse, dim, u, col_update_index);
} else if (version == "smwb1") { } else if (version == "smwb1") {
SMWB1(slater_inverse, dim, nupdates, u, col_update_index); SMWB1(slater_inverse, dim, nupdates, u, col_update_index);
} else if (version == "smwb2") { // } else if (version == "smwb2") {
SMWB2(slater_inverse, dim, nupdates, u, col_update_index); // SMWB2(slater_inverse, dim, nupdates, u, col_update_index);
} else if (version == "smwb3") { // } else if (version == "smwb3") {
SMWB3(slater_inverse, dim, nupdates, u, col_update_index); // SMWB3(slater_inverse, dim, nupdates, u, col_update_index);
} else if (version == "smwb4") { } else if (version == "smwb4") {
SMWB4(slater_inverse, dim, nupdates, u, col_update_index); SMWB4(slater_inverse, dim, nupdates, u, col_update_index);
#ifdef MKL #ifdef MKL